Generating Linear Temporal Logic Formulas for Pattern-Based Specifications

Salamah Salamah, Vladik Kreinovich, and Ann Q. Gates
Dept. of Computer Science, University of Texas at El Paso
El Paso, TX 79968, USA
isalamah, vladik, and agates@utep.edu

Abstract

Software property classifications and patterns, i.e., high-level abstractions that describe program behavior, have been used to assist practitioners in specifying properties. The Specification Pattern System (SPS) provides descriptions of a collection of patterns. Each pattern is associated with a scope that defines the extent of program execution over which a property pattern is considered. Based on a selected pattern, SPS provides a specification for each type of scope in multiple formal languages including Linear Temporal Logic (LTL). The Property Specification tool (Prospec) extends SPS by introducing the notion of Composite Propositions (CP), that classify sequential and concurrent behavior over pattern and scope parameters.

In this work, we present an approach to support the automated generation of Linear Temporal Logic (LTL) formulas for complex pattern-based software specifications that use CPs. We define general LTL formulas for the Response pattern, and provide formal descriptions of the different CP classes. In addition, we formally describe the Response pattern and the different scopes that use CPs.

1 Introduction and Motivation

Although formal verification methods such as model checking [6], theorem proving [12], and runtime monitoring [14] have been shown to improve the dependability of programs, software development professionals have yet to adopt them. The reasons for this hesitance include the high level of mathematical sophistication required for reading and writing formal specifications needed for the use of these approaches [5].

Linear Temporal Logic (LTL) is a prominent formal specification language. LTL’s popularity stems from the fact that it is highly expressive and that it is widely used in formal verification tools. Such tools include, the popular model checker SPIN [6] that has been used in the verification of a variety of systems such as security protocols [1] and flight software [8]. In addition, LTL is used by the Model checkers NuSMV [2] and Java Path-Finder [7]. LTL is also used in the runtime verification of Java programs [14].

Specification Pattern System (SPS). The problem of generating formal specification is difficult, and the temporal nature of LTL makes it even harder to write specifications. The Specification Pattern System [3] defines patterns and scopes to assist the practitioner in formally specifying software properties.

Patterns capture the expertise of developers by describing solutions to recurrent problems. Each pattern describes the structure of specific behavior, defines the pattern’s relationship with other patterns, and defines the scope over which the property holds.

The main patterns defined by SPS are: Universality(P), Absence(P), Existence(P), Precedence(P,Q), and Response(P,Q). Universality(P) states that P is true in every point of the execution; Absence(P) states that P is never true during the execution; Existence(P) states that P is true at some point in the execution; Precedence(P,Q) states that if P holds, then Q must hold before P; and Response(P,Q) states that if P holds, then Q must hold at a future state. Response properties represent a temporal relation called cause-effect between two propositions. SPS restricts the specification of sequences to precedence and response patterns.

In SPS, each pattern is associated with a Scope that defines the extent of program execution over which a property pattern is considered. There are five types of scopes defined in SPS: Global, Before R, After L, Between L And R, and After L Until R. Global denotes the entire program execution; Before R denotes the execution before the first time R occurs, i.e., R holds; After L denotes execution after the first time L occurs; Between L And R denotes the execution between intervals defined by L and R; and After L Until R denotes the execution between intervals defined by L and R and, in the case when R does not occur, until the end of execution.
The SPS website [4] provides a formal description of patterns and scopes in several specification languages including Linear Temporal Logic (LTL), Computational Tree Logic (CTL), and Graphical Interval Logic (GIL). These formulas are provided for patterns and scopes involving single propositions, i.e., patterns and scopes in which \(P, Q, L \), and \(R \) each occur at a single moment of time. SPS also provides formulas for the cases of multiple cause and single effect (when \(P \) is made of multiple propositions and \(Q \) is single) and of single effect and multiple cause (when \(P \) is single and \(Q \) is composed of multiple propositions).

Composite Propositions (CP). In practical applications, we often need to describe properties where one or more of the pattern or scope parameters are made of multiple propositions, i.e., composite propositions (CP). For example, the property that every time data is sent at moment \(t_i \), the data is processed at moment \(t_2 \), and data is stored at moment \(t_3 \). This property can be described using the Response pattern where \(P \) stands for "Data is sent", and \(Q \) is composed of \(q_1, q_2, \) and \(q_3 \) (data is read, data is processed, and data is stored, respectively).

To describe such patterns, Mondragon et al. [10] extended SPS by introducing a classification for defining sequential and concurrent behavior to describe patterns and scopes parameters. Specifically, the work formally described several types of composite propositions (CP) and showed how these descriptions can be translated into LTL.

Some of the corresponding patterns can be described in a Future Interval Logic (FIL) language, a language which showed how these descriptions can be translated into LTL. Future Interval Logic (FIL) is a language which can be used to formally verify software. However, in comparison to LTL, FIL has two limitations: first, due to the limited expressiveness of FIL, not all patterns and scopes involving composite propositions can be represented; second, FIL is not as widely used as LTL in formal verification tools, so the use of FIL restricts the software engineer’s ability to use the resulting specifications.

It is, therefore, important to provide a translation of all possible patterns and scopes involving composite propositions into the more expressive (and more widely used) language LTL. It is also important to show that these translations are indeed correct for all patterns and scopes. In this paper, due to page limitations, we concentrate on the case of the most widely used Response pattern [3]. The matter of proving the correctness of these translations is left as a future work.

The rest of the paper is outlined as follows. We start with a brief description of LTL. Section 3 provides a formal description of the different CP classes. Section 4 formally describes the Response pattern, and Section 5 provides the description of the LTL formulas for the Response pattern within the Global scope. Sections 6 and 7 provide formal definition of the other scopes and describe the LTL formulas for the Response pattern within these scopes.

2 LTL: A Brief Reminder

Formulas of LTL are constructed inductively from elementary propositions \(p_1, p_2, \ldots \) by applying Boolean connectives \(\neg, \lor, \land \) and temporal operators \(X \) (next), \(U \) (until), \(\diamond \) (eventually), and \(\Box \) (always). These formulas assume discrete time, i.e., moments \(t = 0, 1, 2, \ldots \). The meaning of the temporal operators is straightforward. The formula \(XP \) holds at the moment \(t \) means that \(P \) holds at the next moment of time \(t+1 \). To check whether \(PUQ \) holds at the moment \(t \), we must find the first moment of time \(s \geq t \) at which \(Q \) is true; then, the truth of \(PUQ \) means that \(P \) is true at all moments of time \(t' < s \) (if \(Q \) never happens at moment \(t \) or later, then \(PUQ \) is false). The formula \(\Diamond P \) holds at moment \(t \) means \(P \) is true at some moment of time \(t' \geq t \). Finally, the formula \(\Box P \) holds at moment \(t \) if \(P \) is true at all moments of time \(t' \geq t \).

3 Composite Propositions: A Formal Description

We consider the following 8 CP classes: \(AtLeastOneC \), \(AtLeastOneE \), \(ParallelE \), \(ParallelC \), \(ConsecutiveC \), \(ConsecutiveE \), \(EventualC \), and \(EventualE \). CP classes of type \(T_C \) (called condition type) are defined as follows:

- \(AtLeastOneC(p_1, \ldots, p_n) \) means that at least one of \(p_i \) holds at a given moment of time \(t \), i.e., that \(p_1 \lor \ldots \lor p_n \) holds;
- \(ParallelC(p_1, \ldots, p_n) \) means that all \(p_i \) hold at time \(t \), i.e., \(p_1 \land \ldots \land p_n \) holds;
- \(ConsecutiveC(p_1, \ldots, p_n) \) means that \(p_1 \) holds at moment \(t_1 = t, p_2 \) holds at moment \(t_2 = t + 1, \ldots, \) and \(p_n \) holds at moment \(t_n = t + (n-1) \); the corresponding LTL formula \(Consecutive_C^{LTL}(p_1, \ldots, p_n) \) is \((p_1 \land X(p_2 \land X(\ldots
and X(p_n))) \ldots) \);
- \(EventualC(p_1, \ldots, p_n) \) means that \(p_1 \) holds at \(t_1 = t \), \(p_2 \) holds at some moment \(t_2 > t_1, \ldots, \) and \(p_n \) holds at some moment \(t_n > t_{n-1} \); the corresponding LTL formula \(Eventual_C^{LTL}(p_1, \ldots, p_n) \) is \(p_1 \land X(\neg p_2 \land X(\neg p_3 \land X(\ldots X(\neg p_n \land p_n)))) \ldots) \).
Definition 1

- By a CP class, we mean one of the following four terms: AtLeastOne, Parallel, Consecutive, and Eventual.
- By a type of proposition, we will mean C, E, or H: the type H will be called auxiliary.
- By a composite proposition P, we mean an expression of the type $T_y(p_1, \ldots, p_n)$, where T is a CP class, y is a type of proposition, and p_1, \ldots, p_n are (single) propositions.

Definition 2

- For $T = \text{AtLeastOne}$ and for $T = \text{Parallel}$, $T_H(p_1, \ldots, p_n)$ means the same as $T_C(p_1, \ldots, p_n)$, and $T_H^{LTL}(p_1, \ldots, p_n)$ is defined as $T_C^{LTL}(p_1, \ldots, p_n)$.
- For $T = \text{Consecutive}$ and for $T = \text{Eventual}$, $T_H(p_1, \ldots, p_n)$ means

 \[
 \begin{align*}
 &T_C(p_1 \land \neg p_2 \land \ldots \land \neg p_n, p_2 \land \neg p_3 \land \ldots \land \neg p_n, \ldots, p_n), \\
 &\text{and } T_H^{LTL}(p_1, \ldots, p_n) \text{ is defined as} \\
 &T_C^{LTL}(p_1 \land \neg p_2 \land \ldots \land \neg p_n, p_2 \land \neg p_3 \land \ldots \land \neg p_n, \ldots, p_n).
 \end{align*}
 \]

For example, $\text{Consecutive}_H(p_1, \ldots, p_n)$ holds at the moment t if:

- at the moment of time t, the proposition p_1 holds and all the further propositions p_2, \ldots, p_n are false;
- at the next moment of time $t + 1$, the proposition p_2 holds and all the further propositions p_3, \ldots, p_n are false; \ldots; and
- at the moment $t + (n - 1)$, the proposition p_n holds.

In other words, $\text{Consecutive}_H(p_1, \ldots, p_n)$ holds at the moment t if the following formula for T_H^{LTL} holds at moment t:

\[
\begin{align*}
 &\left(p_1 \land \neg p_2 \land \neg p_3 \land \ldots \land \neg p_n \land \\
 &X(p_2 \land \neg p_3 \land \ldots \land \neg p_n \land \\
 &X(\ldots \land X(p_{n-1} \land \neg p_n \land X(p_n)) \ldots))\right)
\end{align*}
\]

Definition 3 We say that a composite proposition $T_E^{LTL}(p_1, \ldots, p_n)$ holds at the moment t if at the moment t, all propositions p_i are false, and they remain false until some moment t' when the composite proposition $T_H(p_1, \ldots, p_n)$ becomes true.

For example, a composite proposition $\text{AtLeastOne}_E(p_1, \ldots, p_n)$ holds at moment t if all the propositions p_1, \ldots, p_n are false at the moment t, and at least one of these propositions p_1, \ldots, p_n is true at some future moment of time $t' > t$.

Definition 4 By an LTL formula $T_E^{LTL}(p_1, \ldots, p_n)$ for $T_E(p_1, \ldots, p_n)$, we mean the formula

\[
\begin{align*}
 &\left(\neg p_1 \land \neg p_2 \land \ldots \land \neg p_n \land \\
 &((\neg p_1 \land \neg p_2 \land \ldots \land \neg p_n) \lor T_H^{LTL}(p_1, p_2, \ldots, p_n)).
 \end{align*}
\]

Theorem 1 For every composite proposition P and for every moment of time t, P holds at the moment t' if and only if the corresponding LTL formula P^{LTL} holds at this moment t.

Comment. Due to page limitations, detailed proofs are given in [13].

4 Response Pattern within Global Scope: Case of Composite Propositions

Patterns such as Response were introduced in [3] for single propositions. In particular, “q responds to p within global scope” means that every time the property p holds, the property q must hold either after it or at the same moment of time. To extend this description to composite propositions, we therefore need to extend the notion “after” to such propositions.

Single propositions describe a single moment of time. In general, composite propositions deal with a time interval (although, of course, this time interval may be degenerate, i.e., it may consist of a single moment of time). Specifically, for every composite proposition $P = T(p_1, \ldots, p_n)$, there is a starting moment b_P – the first moment of time when one of the propositions p_i becomes true, and the ending moment e_P – the first moment of time when the condition T is fulfilled. These moments can be defined as follows.

Definition 5

- For a composite proposition P of the type $\text{AtLeastOne}_C(p_1, \ldots, p_n)$ that holds at the moment t, we take $b_P(t) = e_P(t) = t$.
- For a composite proposition P of the type $\text{AtLeastOne}_E(p_1, \ldots, p_n)$ that holds at the moment t, we take, as $e_P(t)$, the first moment of time $t' > t$ at which one of the propositions p_i becomes true, and $b_P(t) = e_P(t) - 1$.
For a composite statement P of the type \(\text{Parallel}_C(p_1, \ldots, p_n) \) that holds at the moment t, we take $b_P(t) = e_P(t) = t$.

For a composite proposition P of the type $\text{Parallel}_E(p_1, \ldots, p_n)$ that holds at the moment t, we take, as $b_P(t) = e_P(t)$, the first moment of time $t' > t$ at which all the propositions p_i become true.

For a composite proposition P of the type $\text{Consecutive}_C(p_1, \ldots, p_n)$ that holds at the moment t, we take $b_P(t) = t$ and $e_P(t) = t + (n - 1)$.

For a composite proposition P of the type $\text{Consecutive}_E(p_1, \ldots, p_n)$ that holds at the moment t, we find the first moment of time $t' > t$ at which p_1 becomes true, and take $b_P(t) = t' - 1$ and $e_P(t) = t' + (n - 1)$.

For a composite proposition P of the type $\text{Eventual}_C(p_1, \ldots, p_n)$ that holds at the moment t, we take $b_P(t) = t$, and as $e_P(t)$, we take the first moment of time $t_n > t$ at which the last proposition p_n is true and the previous propositions p_2, \ldots, p_{n-1} were true at the corresponding moments of time t_2, \ldots, t_{n-1} for which $t < t_2 < \ldots < t_{n-1} < t_n$.

For a composite proposition P of the type $\text{Eventual}_E(p_1, \ldots, p_n)$ that holds at the moment t, we find the first moment of time t_1 at which p_1 becomes true, and take $b_P(t) = t_1 - 1$; as $e_P(t)$, we take the first moment of time t_n at which the last proposition p_n becomes true.

Definition 6 Let P and Q be composite propositions. We say that Q responds to P within global scope if once P holds at some moment t, then Q also holds at some moment t' for which $b_Q(t') \geq e_P(t)$.

5 LTL Formulas For Response Pattern Within Global Scope: Case of Composite Propositions

To describe LTL formulas P^{LTL} corresponding to patterns P with composite propositions, we need to describe new “and” operations. If we consider a non-temporal formula A as a particular case of LTL formulas, then A means simply that the statement A holds at the given moment of time, and the formula $A \land B$ means that both A and B hold at this same moment of time.

For a general LTL formula A, the fact that A holds at a moment of time t means that some “subformulas” of A hold at this same moment of time, while some other subformulas may hold at different moments of time. For example, the formula $p_1 \land Xp_2$ means that p_1 holds at the moment t while p_2 holds at the moment $t + 1$. It is therefore desirable to come up with a different “and” operation that would ensure that B holds at all the moments of time at which different “subformulas” of A hold. For example, for this new “and” operation, $(p_1 \land Xp_2)$ and B would mean that B holds both at the moment t and at the moment $t + 1$.

We will denote this new “and” operation by $\&_r$. We will also need the operation $A \&_r B$, which will indicate that B holds at the last of A-relevant moments of time. Let us give formal definitions of these operations. We only give the definition for the particular cases needed in our patterns.

Definition 7

- When P is of the type $T_C(p_1, \ldots, p_n)$ or $T_H(p_1, \ldots, p_n)$, with $T = \text{Parallel}$ or $T = \text{AtLeastOne}$, then $P \&_r A$ is defined as $P \land A$.

- When P is of the type $T_C(p_1, \ldots, p_n)$, with $T = \text{Consecutive}$ or $T = \text{Eventual}$, then $P \&_r A$ is defined as $T_C(p_1 \land \ldots, p_{n-1} \land A, p_n \land A)$.

- When P is of the type $T_H(p_1, \ldots, p_n)$, with $T = \text{Consecutive}$ or $T = \text{Eventual}$, then $P \&_r A$ is defined as

$$T_C(p_1 \land \lnot p_2 \land \ldots \land \lnot p_n \land A, \ldots, p_{n-1} \land \lnot p_n \land A, p_n \land A).$$

- When P is of the type $T_E(p_1, \ldots, p_n)$, then $P \&_r A$ is defined as

$$(\lnot p_1 \land \ldots \land \lnot p_n \land A) \land
((\lnot p_1 \land \ldots \land \lnot p_n \land A) U (T_H(p_1, \ldots, p_n \land A))).$$

Definition 8

- When P is of the type $T_C(p_1, \ldots, p_n)$ or $T_H(p_1, \ldots, p_n)$, with $T = \text{Parallel}$ or $T = \text{AtLeastOne}$, then $P \& I_A$ is defined as $P \land A$.

- When P is of the type $T_C(p_1, \ldots, p_n)$, with $T = \text{Consecutive}$ or $T = \text{Eventual}$, then $P \& I_A$ is defined as $T_C(p_1, \ldots, p_{n-1}, p_n \land A)$.

- When P is of the type $T_H(p_1, \ldots, p_n)$, with $T = \text{Consecutive}$ or $T = \text{Eventual}$, then $P \& I_A$ is defined as

$$T_C(p_1 \land \lnot p_2 \land \ldots \land \lnot p_n \land p_0 \land A).$$

- When P is of the type $T_E(p_1, \ldots, p_n)$, then $P \& I_A$ is defined as

$$(\lnot p_1 \land \ldots \land \lnot p_n) \land
((\lnot p_1 \land \ldots \land \lnot p_n) U (T_H(p_1, \ldots, p_n) \& I_A)).$$

Definition 9 An LTL formula corresponding to Response (P, Q) is

$$\Box (P^{\text{LTL}} \rightarrow (P^{\text{LTL}} \&_r \Diamond Q^{\text{LTL}})).$$
For example, if P is of type $\text{Consecutive}(p_1, p_2)$ and Q is of type $\text{Parallel}_E(q_1, q_2)$, then P^{LTL}_E is:

\[
\Box((p_1 \land X p_2) \rightarrow (p_1 \land X (p_2 \land \Diamond (\neg q_1 \land \neg q_2) \land ((\neg q_1 \land \neg q_2) \land ((\neg q_1 \land \neg q_2) \land (q_1 \land q_2))))))
\]

Theorem 2 For the formula “Q responds to P within a global scope”, this formula holds at the moment t if and only if the corresponding LTL formula holds at this moment t.

Comment. Similar results hold for all other patterns from Section 1.1.

6 Other Scopes: Motivations and Definitions

In the previous text, we considered all the propositions in the “global scope”, when, e.g., the existence of P means that P holds for some moment of time t. In practice, we are often only interested in moments of time that occur before or after a certain event. For single propositions, the following scopes were proposed in [3]: “before R”, “after L”, “between L and R”, and “after L until R”.

We want to extend the above definitions of patterns to the case of scopes. For example, we want to define “Q precedes P within a scope s”, meaning that every time P holds within the scope s, Q should hold at a preceding moment of time within the same scope.

In general, a composite proposition P holds at a moment t if several single propositions hold at different moments of time. It is therefore reasonable to say that P occurs within a scope if all these single propositions occur within this scope, i.e., if the whole time interval $[t, e_P(t)]$ is within the scope s. Let us formally describe what this means.

Since we consider composite propositions P, it is natural to allow L and R to be composite propositions as well. A composite proposition P, in general, does not occur at a single moment of time, it usually has a starting moment b_P and the ending moment e_P. So, for composite propositions, “before R” can be naturally interpreted as “before the starting moment of R”, and “after L” can be naturally interpreted as “after the ending moment of L”. To describe this formally, we will use the above definitions (of section 4) of the starting and ending moments.

Definition 10 By a scope statement, we mean a statement of the type “before R”, “after L”, “between L and R”, and “after L until R”, where L and R are composite propositions.

Definition 11 By a scope corresponding to the scope statement, we mean the following time interval:

- For a scope statement “before R”, there is exactly one scope – the interval $[0, b_R(t_f)]$, where t_f is the first moment of time when R becomes true.
- For a scope statement “after L”, there is exactly one scope – the interval $[e_L(t_f), \infty)$, where t_f is the first moment of time when L becomes true.
- For a scope statement “between L and R”, a scope is an interval $[e_L(t_L), b_R(t_R)]$, where t_L is a moment of time at which L holds and t_R is the first moment of time $> e_L(t_L)$ when R becomes true.
- For a scope statement “after L until R”, in addition to scopes corresponding to “between L and R”, we also allow a scope $[e_L(t_L), \infty)$, where t_L is a moment of time at which L holds and for which R does not hold at any moment $t > e_L(t_L)$.

Definition 12 Let P and Q be composite propositions, and let s be a scope.

- We say that P s-holds at a moment $t_P \in s$ if P holds at the moment t_P and the ending moment of time $e_P(t_P)$ belongs to the same scope s.
- We say that Q responds to P within the scope s if once P s-holds at some moment t, then Q also s-holds at some moment t' for which $b_Q(t') \geq e_P(t)$.

Definition 13 We say that a pattern holds within a scope statement if it holds within each scope corresponding to this scope statement.

Now that we have defined what it means for a pattern to hold within the different types of scopes, we are ready to provide the LTL description of the five patterns within the scopes (“before R”, “after L”, “between L and R”, and ”after L until R”).

7 Response Pattern For Scopes Other Than Global: Case of Composite Propositions

Definition 14 Let P be a response pattern, i.e., “Q responds to P”, and let $P_{<R}$ denote this pattern in the scope “before R”, i.e., a pattern “Q Responds to P Before R”. Then, the corresponding LTL-formula $P_{<R}^{\text{LTL}}$ has the following form:

- when R is of the type $T_C(r_1, \ldots, r_n)$, then $P_{<R}^{\text{LTL}}$ is
 \[
 \neg((\neg R_{LTL}^{\leq R}) \cup ((P_{<R}^{\text{LTL}} \land \neg R_{LTL}^{\leq R}) \& X (R_{H}^{\text{LTL}})))
 \]
 and
 \[
 (P_{<R}^{\text{LTL}} \land \neg R_{H}^{\text{LTL}}) \cup
 ((\neg (Q_{LTL}^{\leq R} \land \neg R_{H}^{\text{LTL}})) \land
 \neg ((Q_{LTL}^{\leq R} \land \neg R_{H}^{\text{LTL}})))).
 \]

For example, the formula \mathcal{P}_2^{LTL} for Q responds to P Before R where R is $AtLeastOne_C(r_1, r_2)$, P is $Consecutive_C(p_1, p_2)$, and Q is $Parallel_C(q_1, q_2)$ is:
\[
\neg((\neg(r_1 \lor r_2)) U (((p_1 \land \neg(r_1 \lor r_2)) \land X((p_2 \land \neg(r_1 \lor r_2)) \\
\land((\neg((q_1 \land q_2 \land \neg(r_1 \lor r_2))) U (r_1 \lor r_2))))))
\]

Pattern formulas for the scopes “Before” and “After” can be generated using the formula \mathcal{P}_L^{LTL} for the Global scope and the formula \mathcal{P}_R^{LTL} for the scope “before”:

Definition 15 For a pattern \mathcal{P} in the “After” scope, the corresponding LTL formula is:
\[
\neg((\neg L^{LTL}U(L^{LTL}\land \neg \mathcal{P}^{LTL})).
\]

Definition 16 For a pattern \mathcal{P} in the “Between” scope, the corresponding LTL formula is as follows:
- $\Box (((L^{LTL}\land \neg R^{LTL}) \rightarrow (L^{LTL}\land \neg \mathcal{P}^{LTL})$ if R is of type C;
- $\Box (L^{LTL} \rightarrow (L^{LTL}\land \neg \mathcal{P}^{LTL}))$ if R is of type E.

Definition 17 For a pattern \mathcal{P} in the “After” until R scope, the corresponding LTL formula is:
- if R is of type C, then
 \[
 \Box((L^{LTL}\land \neg R^{LTL}) \rightarrow
 (L^{LTL}\land \neg((\mathcal{P}^{LTL} \land \neg (\circ R^{LTL}) \rightarrow \mathcal{P}^{LTL})))).
 \]
- if R is of type E, then
 \[
 \Box (L^{LTL} \rightarrow
 (L^{LTL}\land \neg((\mathcal{P}^{LTL} \land \neg (\circ R^{LTL}) \rightarrow \mathcal{P}^{LTL})))).
 \]

Theorem 3 For every response formula \mathcal{P} and for every scope s, the formula \mathcal{P} holds within the scope s at the moment t if and only if the corresponding LTL formula holds at this moment t.

Comment. Similar results hold for all other patterns from Section 1.1.

8 Conclusions

In many real-life situations, software specifications involve complex relations between events and conditions at different moments of time. Such specifications can be formally described in terms of patterns and scopes; however, at present, there is no practically useful general tool for checking such specifications.

In this paper, we describe a (reasonably general) class of such patterns-and-scopes specifications. We prove that specifications from this class can be reformulated in terms of the equivalent formulas of Linear Temporal Logic (LTL). Since there exist efficient tools for checking LTL-based specifications, this reformulation thus enables us to check the original complex specifications.

Acknowledgments. This work is funded in part by NSF grant EAR-0225670, by Texas Department of Transportation grant No. 0-5453, and by the Japan Advanced Institute of Science and Technology (JAIST) International Joint Research Grant 2006-08. The authors are thankful to the anonymous referees for important suggestions.

References

