1. Build Deterministic Finite Automata for the following languages over alphabet \(\{a, b\} \):

 (a) Strings of length at least 3
 (b) Strings that do not contain the substring \(ba \)
 (c) Strings that have either exactly one \(a \) or exactly two \(a \)'s.

2. Let an NFA be defined as \((Q, \Sigma, \delta, q_0, F)\) where

 \(Q = \{q_0, q_1, q_2\} \)
 \(\Sigma = \{a, b\} \)
 \(q_0 \) is the start state
 \(F = \{q_1\} \)

 \(\delta \) is given by

 \[
 \begin{array}{c|ccc}
 & a & b & \varepsilon \\
 \hline
 q_0 & \{q_2\} & \{q_0\} & \{q_1\} \\
 q_1 & \{q_2\} & \{q_0\} & \emptyset \\
 q_2 & \{q_0, q_2\} & \{q_1\} & \emptyset \\
 \end{array}
 \]

 Construct a DFA equivalent to this NFA following the algorithm we saw in class.