CS 4379/5375
System Security Assurance

SPRING 2015

This course focuses on incorporating security technologies and methods into new and existing systems; learning how attackers expose vulnerabilities; analyzing threats; applying methods to prevent and defeat attacks; and understanding the ethical responsibilities and obligations associated with developing, acquiring, and operating software systems.

Course URL:
http://www.cs.utep.edu/DeptCS/courses/cs5390/

Instructor:
- Dr. Jaime C. Acosta
 Office: Chemistry and Computer Science Building 3.1018
 Email: jcacosta@utep.edu
 Web: http://www.jaimeacosta.info/

Class location and time:
The course codes are CRN 24767/27180 for CS4390/CS5375 respectively. Class will be held in room CRBL C201 on Mondays from 6:00pm to 8:50pm.

Course materials:
This course does not require the purchase of a textbook; all resource material will be posted on the course website. Much of the material from this course will derive from the following books:

It is highly recommended that students have access to a computer with administrative privileges.
Learning Outcomes:
Level 3: Synthesis and Evaluation (Level 3 outcomes are those in which the students can apply the material in new situations. This is the highest level of mastery.) Upon successful completion of this course, students will be able to:

- Explain the variety of methods by which attackers can damage software or data associated with software via weaknesses in the design or coding of the system.
- Analyze threats to software systems.
- Analyze threats to operational environments.
- Design and plan for effective countermeasures such as access control, authentication, intrusion detection, encryption, and coding checklists.

Level 2: Application and Analysis (Level 2 outcomes are those in which the student can apply the material in familiar situations, e.g., can work a problem of familiar structure with minor changes in the details.) Upon successful completion of this course, students will be able to:

- Deploy appropriate countermeasures, such as layers, access controls, privileges, intrusion detection, encryption, and coding checklists.
- Explain how physical security countermeasures such as gates, locks, guards, and background checks can address risks.
- Explain how people who are knowledgeable about attack and prevention methods are obligated to use their abilities, both legally and ethically.
- Describe the legal and ethical considerations involved in analyzing a variety of historical events and investigations.

Level 1: Knowledge and Comprehension (Level 1 outcomes are those in which the student has been exposed to the terms and concepts at a basic level and can supply basic definitions.) The material has been presented only at a superficial level. Upon successful completion of this course, students will be able to:

- Describe the types of safety and security risks associated with critical infrastructure systems such as power, telecommunications, water, and air traffic control systems.

Course Policies:
- Homework assignments will be completed either individually or in groups and are due at the beginning of the class.
- Assignments may be discussed with others, but solutions should be designed, written, and tested by you or your group.
- No make-up exams or assignments will be given except under extreme conditions.
- It is the student's responsibility to independently cover any material missed.
Grades:

<table>
<thead>
<tr>
<th>Assignment</th>
<th>40%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tests</td>
<td>25%</td>
</tr>
<tr>
<td>Final Exam</td>
<td>30%</td>
</tr>
<tr>
<td>Participation</td>
<td>5%</td>
</tr>
</tbody>
</table>

Final letter grades will be "no worse" than:

A = 90% through 100%
B = 80% through 89%
C = 70% through 79%
D = 60% through 69%
F = Less than 60%

Submission of late work:
All assignments are due at the beginning of class. Late work will be accepted at most two days late, unless specified by the instructor, and will be marked down two letter grades. After two days the assignment will not be accepted.

Standards of Conduct and Academic Dishonesty
You are expected to conduct yourself in a professional and courteous manner, as prescribed by the UTEP Standards of Conduct: http://admin.utep.edu/Default.aspx?PageContentID=2237&tabid=30295

Academic dishonesty includes but is not limited to cheating, plagiarism and collusion. Cheating may involve copying from or providing information to another student, possessing unauthorized materials during a test, or falsifying data (for example program outputs) in laboratory reports. Plagiarism occurs when someone represents the work or ideas of another person as his/her own. Collusion involves collaborating with another person to commit an academically dishonest act. Professors are required to - and will - report academic dishonesty and any other violation of the Standards of Conduct to the Dean of Students.

When in doubt, please ask. On exams you must submit your own work and you may not give or receive help. On assignments you must submit your own work. Submissions that are “identical” will be considered as a clear evidence of cheating.

Students with Disabilities
In accordance with the UTEP procedure, if you need accommodations for equal access in this course, please do the followings:

- Contact Disabled Student Service Office (DSSO) (915-747-5148) to verify your eligibility.
- Contact me before or at the beginning of the first class to discuss your individual needs for accommodations, with an official letter of accommodation or other documents.

Ethics and Security Vulnerabilities:
During this course, you will learn skills used by professional security evaluators to identify and remediate vulnerabilities. Tampering with systems and exploiting vulnerabilities without written consent has severe consequences including academic suspension and legal prosecution and could prevent you from ever working in your field of study.

In two words: act responsibly!
Tentative Schedule:

<table>
<thead>
<tr>
<th>Week</th>
<th>Topics Covered</th>
<th>Assignments</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Course Introduction/Legal</td>
<td></td>
</tr>
</tbody>
</table>
| 2 | Reverse Engineering IA-32 and Common Tools | A. Reversing Introduction
 | | | B. Low-level analysis
 | | | C. IA-32 Stack
 | | | D. Static Disassembly |
| 3 | Application-level Vulnerabilities | E. Stack Vulnerabilities
 | | | F. IA-32 Heap
 | | | G. Dynamic Debugging
 | | | H. Heap Vulnerabilities |
| 4 | Os-level Vulnerabilities | I. DLL Injection
 | | | J. Process Injection Theory
 | | | K. Process Injection Implementation
 | | | L. Authentication/Authorization
 | | | M. Credentials Management |
| 5 | Test | |
| 6 | Spring Break | |
| 7 | Malware | N. Malware Categories
 | | | O. Malware Obfuscation |
| 8 | Secure Software Development | P. Secure Coding |
| 9 | Test | |
| 10 | Networking and Attacks | Q. Telecommunications Intro
 | | | R. Routing
 | | | S. Remote Exploitation |
| 11 | Cyber Defense | T. Network Defenses |
| 12 | Test | |
| 13 | Virtualization | U. Design a Virtualized Testbed |
| 14 | Final Exam | |