A Combined Method for Discovering Short-Term Affect-Based Response Rules for Spoken Tutorial Dialog

Tasha K. Hollingsed and Nigel G. Ward

ISCA Workshop on Speech and Language Technology in Education (SLaTE) 2007

A good tutoring system should be able to detect and respond to subtle changes in the affective state of the learner, as a way to motivate and encourage the student, thereby improving the learning outcomes. This responsiveness should also operate at the sub-second timescale, as with some human tutors. Modeling this ability is, however, a challenge. This paper presents a combined method for the discovery of the rules governing such real-time responsiveness. This method uses both machine-learning and perceptual techniques, both with and without reference to internal states. This method is illustrated with the problem of choosing supportive acknowledgments in memory-reinforcing quiz dialogs. A wizard-of-oz experiment showed that users prefer a tutorial system based on responsive rules to one that chooses acknowledgments at random.

full paper

back to publications