Abstract

Many language learners never acquire truly native-sounding prosody. Previous work has suggested that this involves skill deficits in the dialog-related uses of prosody, and may be attributable to weaknesses with specific prosodic constructions. Using semi-automated methods, we identified 32 of the most common prosodic constructions in English dialog. Examining 90 minutes of six advanced native-Spanish learners conversing in English, there were differences, notably regarding swift turn-taking, alignment, and empathy, but overall their uses of prosodic constructions were largely similar to those of native speakers.

Keywords: conversation, dialog, interaction, pragmatics, language learning, non-native prosody, second language competence, American English, Mexican Spanish speakers, L1 transfer

1. Introduction

Non-native speakers often have saliently non-native prosody, even when their other language skills are good (Zimmerer et al., 2014). Among the various functions of prosody, it has been suggested that the dialog-related aspects might be most important for language learners, since incomplete command of the prosodic forms used for pragmatic functions can impact interactional competence and the achievement of communicative goals (Barraja-Rohan, 2011). Further, non-natives may show an “over-use of a limited variety of intonation patterns in the L2” and an “underuse” of others (Ramirez Verdugo, 2003, 2006).

This paper reports a corpus-based study of these issues. Specifically, we examine the extent to which non-native dialog-related prosody (“dialog prosody”) differs from that of native speakers, and whether there are deficits with specific prosodic constructions.

This paper is organized as follows. First we discuss previous approaches and their limitations (Section 2). Choosing to describe prosodic skills in terms of prosodic constructions, we applied Principal Components Analysis (Section 3) to native-native dialog data, resulting in the identification of 32 common prosodic constructions of English dialog (Section 4). Since sim-
ple statistical measures were adequate for finding behavior differences (Section 5), we applied these to 90 minutes of data from six advanced L1-Spanish speakers in conversations with native speakers (Section 6). For some constructions there were differences, which we discuss, but these were small, and overall the non-natives seemed to have mastery of the dialog-related aspects of prosody (Section 7). After briefly discussing Spanish and Spanish-influenced prosody (Section 8), we conclude and note some questions for future research (Section 9).

2. Methods for Characterizing Non-Native Prosodic Differences

The problem of characterizing non-native prosody and how it differs from native-speaker prosody is complex. This is especially true for the dialog-related uses of prosody. This section overviews four commonly used approaches and notes their limitations.

The first approach starts with a pragmatic function. The classic example is Gumperz’s discussion of cafeteria servers who offered side dishes using a falling accent, a function which English native speakers perform with a rising accent (Gumperz, 1982). Other work in this vein has examined English question, focus and list-final intonation (Ramirez Verdugo, 2003; Swerts and Zerbian, 2010), Italian contrast (Turco et al., 2015), and Spanish turn keeping and information seeking (Aronsson and Fant, 2014). Such analyses rely on the existence of a clear intended function, and thus they cannot give us the whole story, since speakers in dialog commonly pursue multiple goals with each utterance (Bunt, 2011; Heritage, 2012). In such cases it is impossible to say definitively what the appropriate prosodic form would be, as native speakers in the same situation might differ in which of the pragmatic functions they choose to prosodically highlight.

A second approach starts with a syntactic form or sentence type and looks at differences between learners’ and natives’ prosodic realizations of it. While often informative, this approach is complicated by the fact that a given syntactic structure may serve different discourse functions, depending on the context and the prosody. Indeed, as prosody is often determined more by the pragmatic function than the syntactic form, especially in dialog (Lai, 2012; Hedberg et al., 2014), findings obtained from such production tasks may not fully reflect actual behavior in dialog. Nevertheless most detailed studies of learners’ prosody have used this approach.

A third approach characterizes non-native prosody with reference to a model of the appropriate prosodic forms. For example, Toivanen’s examination of the distribution of tone types (fall, rise-fall, fall-plus-rise, etc.) showed that learners used rising tones less than did native speakers (Toivanen, 2003). However model-based analysis also has its limitations. For models of prosody that are symbolic rather than phonetic, labor-intensive segmentation and/or hand labeling is required before they can be applied to data. More generally, such approaches only work for the aspects of prosody that a model handles, but of course these are always limited. For example, the most popular current models of prosodic forms are based on only monolog data, and mostly handle only pitch (intonation), and they leave out speaking rate, timing, and energy information, but these aspects are of course important in modeling learners’ skills (Trouvain and Gut, 2007; Romero-Trillo, 2012).

A fourth approach uses raw statistics on prosodic usage over corpora. For example, Zimmerer’s measurements of native-speaker and non-native corpora show much less pitch variation in the latter (Zimmerer et al., 2014). This method can exploit large amounts of data and is entirely objective. It is also robust: for example, while in any given utterance a non-native may
have a good reason to use compressed pitch range — for example when losing interest in a topic and preparing to close it out — consistent use of less pitch variation than native speakers is good evidence for something missing. Other work in this vein has shown that values of speaking rate and pitch range correlate with assessments of comprehensibility and accentedness (Kang, 2010). However raw statistics, being context-independent, cannot tell, for example, in which specific contexts more pitch range would have been appropriate.

These methods have provided insights into the issues, and details regarding some specific differences in prosody. Nevertheless, there is as yet no big-picture understanding of non-natives’ dialog-prosodic skills. In particular, we want to know whether it is indeed in dialog-related functions that their prosody differs most, and what specific dialog-related skills they are weakest at.

Our method for investigating these questions, like the latter two approaches above, starts with forms, rather than with functions, and is corpus-based. This is because we are centrally interested in what people actually do in conversation, taking inspiration from the idea that the pragmatic functions that matter most in real life are those which people actually use most in conversation.

3. Prosodic Constructions and their Automatic Discovery

Describing prosodic behavior is difficult. There is currently no consensus on how to represent prosodic knowledge, and prosody as used for dialog purposes is especially problematic (Kalathottukaren et al., 2015). For this study we chose to use an approach based on an inventory of constructions, since this can support both automated analysis and analysis with respect to pragmatic functions and dialog skills.

3.1 Prosodic Constructions

Recently a shared notion of prosodic construction has emerged from work in several research traditions, including conversation analysis, experimental phonetics, autosegmental-metrical intonation modeling, and big-data analysis (Ogden, 2007, 2012; Petrone and Niebuhr, 2013; Niebuhr, 2014; Hedberg et al., 2014; Ward, 2014). Prosodic constructions are recurring temporal patterns of prosodic activity that express specific meanings and functions. They typically involve not only pitch contours but also energy, rate, timing and articulation properties, and may involve synchronized contributions by two participants.

For example, in the Upgraded Assessment Construction, as described by Ogden (Ogden, 2012; Ward, 2014), a listener expresses agreement with an assessment by producing an upgraded version, for example when one speaker (A) observes it’s pretty and the other (B) follows with absolutely gorgeous. The upgraded assessment is generally produced with increased amplitude, pitch height, pitch range, and rate, and with a ‘tighter’ articulation.

Often this upgraded assessment follows a bid for some kind of empathy or affiliation. Prosodically this involves A speaking loudly for a bit but then trailing off, where the trailing-off is in a lower pitch, and then falling silent for a moment. B’s upgraded assessment in turn is often followed by resumed speech by A that is again louder and tends to last for a few seconds.
Thus this construction involves interleaved prosodic behaviors by two participants, with specific sequencing and timing. Table 1 roughly shows the prototypical temporal configuration of this construction. In jointly performing this construction the participants each express specific attitudes, and together establish a shared assessment and joint interest.

Prosodic constructions share much with the classical notion of intonation contour (Liberman and Sag, 1974; Ladd, 1978). They describe a recurring sequence of prosodic elements in a specific temporal configuration, with some dialog function. These functions often affect the future course of the dialog or the unfolding relationship between the participants. They may in addition have meanings or expressive values, although these are often abstract and highly context-dependent.

Prosodic constructions extend intonation contours in three ways (Niebuhr, 2014; Ward, 2014). First, they describe not only patterns of pitch but also of other prosodic features, such as amplitude, rate, and timing. Second, prosodic constructions are not limited to the behavior of a single speaker, but often describe coordinated actions by two parties. Third, they are not necessarily linked to sentences or utterances, but instead can cover arbitrary regions of time. Prosodic constructions resemble grammatical constructions (Goldberg, 2013) — form-function pairings where the form is a syntactic template and the function is some conventionalized semantic or pragmatic content — in particular in being composable.

Constructions can be modeled in various ways: qualitatively, symbolically (Hedberg et al., 2014), or quantitatively (Lai, 2012). For this paper we use quantitative descriptions, as they have two useful properties. First they are superimposable, which suits the fact that any specific time in a dialog may involve multiple prosodic behavior sequences expressing simultaneously present pragmatic functions. Second, their presence is graded, meaning that a construction is not simply present or absent, rather it can be present to varying degrees, to the extent that more of the component features are more strongly present and their temporal configuration more closely matches the prototype. For example, a weak version of the upgraded assessment construction might function as a somewhat perfunctory acknowledgment.

Despite some limitations (Ward, 2014), this approach to prosody has the important advantage of enabling the automatic detection of prosodic constructions in unlabeled data. This enables the computation of statistics on construction use.

Table 1: Major Components of a Prototypical Rendition of the Upgraded Assessment Construction. Times are in milliseconds relative to the end of Speaker A’s assessment.

<table>
<thead>
<tr>
<th>Time</th>
<th>Speaker A</th>
<th>Speaker B</th>
</tr>
</thead>
<tbody>
<tr>
<td>–3000 to –300ms</td>
<td>speaking</td>
<td>quiet</td>
</tr>
<tr>
<td>–2500 to –1300</td>
<td>speaking louder</td>
<td>quiet</td>
</tr>
<tr>
<td>–800 to 0</td>
<td>tapering in loudness to silence</td>
<td></td>
</tr>
<tr>
<td>–300 to +300</td>
<td>quiet or silent</td>
<td>loud and fast</td>
</tr>
<tr>
<td>+300 to +600</td>
<td>resuming speaking</td>
<td>slowing and fading out</td>
</tr>
<tr>
<td>+600 to +1300</td>
<td>speaking fast</td>
<td>quiet</td>
</tr>
<tr>
<td>+1300 to +3200</td>
<td>speaking</td>
<td>quiet</td>
</tr>
</tbody>
</table>
3.2 Construction Discovery by Principal Components Analysis

In order to examine non-natives’ uses of dialog prosody as comprehensively as possible, we need a large inventory of constructions.

Constructions can be discovered in many ways, including inductively by conversation analysis (Ogden, 2012), statistically by corpus-based studies of the realizations of known pragmatic functions (Hedberg et al., 2003; Niebuhr, 2014; Hedberg et al., 2014), and semi-automatically (Ward, 2014). Given similar data, it appears that these methods can all give similar results, so here we used the fastest and easiest: a semi-automated one.

Several automated and semi-automated discovery methods for intonation contours and other prosodic elements have recently been developed. Techniques include clustering, Functional Data Analysis (FDA), and Principal Components Analysis (PCA) (Jokisch et al., 2014; Reichel, 2014). In this paper we use PCA, because it is relatively simple, and because it works for raw dialog data, without needing preliminary segmentation or annotation.

PCA can be described in several ways, but it is convenient to view it as an iterative analysis process. In each stage, PCA finds the factor that explains as much as possible of the observed variation, across many datapoints and many variables. It then subtracts out what that factor explains, finds another factor to explain much of the remaining variation, and iterates. For example, if we have statistics on children, including height, weight, running speed, arm strength, lung capacity, stamina, and so on, the first underlying factor may be age, the second something like skinny-chubby, the third socioeconomic status, and so on. The observed variable values for any datapoint (child) are modeled as linear combinations of these underlying factors. Conversely, given the observed values for a datapoint, it is trivial to compute the values of the underlying factors, by a simple matrix multiplication.

Prosodic constructions as we model them — being graded and superimposable — perfectly suit the assumptions of PCA: they can serve as the underlying factors that explain the surface, observed, prosody. That is, the observed prosody over any short region of a dialog can be explained as the superimposed effects of multiple, simultaneously-active constructions. Thus, our method is to apply PCA to datapoints, each of which is a point in time, each described by various observed prosodic features. The output is then a set of dimensions, which are configurations of features that frequently occur together.

3.3 Prosodic Features Used

This subsection documents the prosodic features used as input to PCA. We used a set of features and windows chosen to be relevant to the dialog-related-aspects of prosody, rather than lexical, syntactic, emotional, or speaker-dependent aspects. In particular, this set includes features of both speakers’ prosodic behavior, since we are interested in constructions involving contributions by both speakers. Furthermore, our set is computed over fixed-width windows at fixed offsets, rather than using syllable-, word-, or utterance-aligned features. This is because, first, although useful for many purposes (including studies of speaker differences, lexical-accent realizations, and speech-act forms), aligned features seem relatively less relevant to dialog behaviors, second, aligned features are impossible to accurately compute automatically, and third it is difficult to even define aligned features when considering with both sides of a dialog, since speakers seldom behave in lockstep.
To support the discovery of temporal patterns, for each datapoint we use a number of features at different offsets to broadly represent the local prosodic context. For example, in addition to the volume over the past 50 milliseconds, we also use the volume over a 50 millisecond window centered 75 ms in the past, over a 100 ms window centered 150 ms in the past, and so on, for both past and future windows, spanning about 6 seconds centered around the point of interest. Including such offset features enables the use of PCA for time-series analysis. Specifically, for each datapoint we compute a set of 176 features, as listed in Figure 1. This resembles other recent prosodic feature sets used for machine-learning applications; in particular it includes not only pitch but also features for speaking rate, volume, and creaky voice (Schuller, 2011; Shriberg and Stolcke, 2004; Ward et al., 2011). We followed previous work in using more windows for the most informative features (notably amplitude), and in choosing the window sizes to give greater temporal resolution near the point of interest. Our features were computed using the Mid-Level toolkit (http://www.cs.utep.edu/nigel/midlevel/), using the built-in normalizations to make the output features fairly speaker-independent.

For completeness, we note that here, as always with prosodic features, normalization is an issue. The Mid-Level Toolkit outputs simple but reasonably robust methods approximately. For loudness we use log energy normalized per track to correct for different recording conditions and different speakers. For the pitch-height and pitch-range features we use percentiles in the distribution of pitch seen for that track, thus again normalizing for speaker. For rate, we use a simple frame-by-frame energy-difference measure. To avoid the problems associated with interpolating pitch over nonvoiced regions, we use as evidence for the associated pitch features (low, high, narrow wide) only the valid pitch points.

<table>
<thead>
<tr>
<th>Feature</th>
<th>Start Time (ms)</th>
<th>End Time (ms)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amplitude</td>
<td>-3200</td>
<td>-1600</td>
</tr>
<tr>
<td>Low Pitch, High Pitch,</td>
<td>-1600</td>
<td>0</td>
</tr>
<tr>
<td>Creakiness</td>
<td>0</td>
<td>50</td>
</tr>
<tr>
<td>Narrow Pitch, Wide Pitch</td>
<td>50</td>
<td>100</td>
</tr>
<tr>
<td>Speaking Rate</td>
<td>100</td>
<td>200</td>
</tr>
</tbody>
</table>

Figure 1: The Prosodic Feature Inventory. Start and end times for each window is in milliseconds offset from the point of interest. These features are computed for both left and right speakers, giving 176 in total.
3.4 From Dimensions to Constructions

While PCA is merely a mathematical operation, it often succeeds in identifying meaningful factors (dimensions) that underlie the observed behavior, and this has been seen for prosody also (Ward and Vega, 2012; Ward, 2014).

The workflow is summarized in Figure 2. For each timepoint in the corpus the prosodic features are computed. Principal Component Analysis digests all this data and outputs 176 dimensions. Each dimension has a weight on each of the features. For example, on the data set discussed below, Dimension 1 (principal component 1) has a high negative weight on Speaker-A-amplitude-over-0-50-milliseconds, a high negative weight on Speaker-A-amplitude-over-50-100-milliseconds, a positive weight on Speaker-B-energy-amplitude-over-0-50-milliseconds, and so on. Thus, at times when Speaker A is speaking and B silent, the value on dimension 1 will be negative, and for the opposite positive. Thus every dimension incorporates, in effect, two patterns.

Patterns often have temporal variation in the loadings. For example, for Dimension 1 the loadings on the high-pitch features are high for early windows but then fall, to the extent that, by the 800-1600 millisecond window, the low-pitch loading is greater than the high-pitch loading. Thus, the simple process of PCA finds the well-known prosodic phenomenon of declination. All patterns observed so far involve such temporal variation, so it is appropriate to call them constructions.

4. Some Prosodic Constructions of English

To quantify non-native behavior patterns, we need to compare them to some standard. Specifically, to do construction-based analysis we needed a reference data set to use for construction discovery. Wanting something representative of the language norm that our non-natives would be most familiar with, we decided to use the Social Speech collection (Ward and Werner, 2013). Like the primary data set, described below, this consists of unconstrained conversations among computer science students at a university in the Southwest United States, although recorded for a different purpose, recorded two years earlier, and recorded with different microphones. We took 6 native-native conversations from this corpus, lasting about 10 minutes each, and com-
Ward and Gallardo

Figure 3: Loadings of Dimension 3. Purple solid lines are for the A speaker; green dashed lines for B. Time is in milliseconds. The dotted lines are zeros, with points above them indicating positively loaded features and points below negative. The “pitch height” line shows the difference between the loadings of the high-pitch and low-pitch features; similarly “pitch width” is the difference of the wide and narrow features. While this figure shows the strengths of factor loadings, rather than average values for pitch height etc., in practice, instances in the dialogs where this dimension is strongly present do tend to have feature values varying over time as this visualization suggests. While the volume features extend out to 3200 ms before and after the point of interest, to save space we show only 4 seconds-worth of feature loadings.

The second column of Table 2 shows the percentage of variance accounted for by each of the resulting dimensions. It shows, for example, that describing prosodic behavior just with one value, the value on Dimension 1, explains 17% of the variance across all 176 features. Together the top 16 dimensions account for 55% percent of the variation in these dialogs, suggesting that examination of the top 32 constructions can cover most of the dialog-prosody skillset that learners need.

The other outcome of PCA was the prosodic description of each construction: the actual weightings, for each component, of each of the features. For example, Dimension 1 had a loading of −0.08 on the speaker A amplitude-over-800-to-1600-ms feature. As each dimension has a loading on each of the 176 features, it is convenient to use visualizations. For example, Figure 3 shows the loadings for Dimension 3. It can be seen that the loading for the

computed the prosodic features described above for 720,000 data points, taken every 10 milliseconds for both speakers. We then applied PCA.
speaker-A-log-energy ("volume") feature from -1600 to -800 ms is positive, and so on. Exam-
ing the other loadings, it is clear that this dimension involves the A speaker (top) speaking
and then falling silent, and the B speaker, conversely, being silent and then speaking. Thus it
encompasses a turn-yielding construction ("dimension 3 lo") and a turn-taking construction
("dimension 3 hi"). From the figure it is easy to also see some of the prosodic correlates
typical of turn-yielding pattern in English: notably increases in volume, speaking rate, and
creakiness, followed by a further increases on the latter two and a simultaneous drop in pitch.
Of course, specific instances of turn yield will not follow this pattern exactly, due to the si-
multaneous presence of other, superimposed, constructions. An unusually well-matching ex-
ample is seen in Figure 4, transcribed as Example 1. Audio for the examples is provided at
http://www.cs.utep.edu/nigel/l2english/.

We note in passing that it is interesting that this method assigns the pitch rise to the same
construction as the swift turn exchange, based on correlations. Other analyses might consider
it instead a nuclear accent, not directly related to turn-taking. Determining which of these ac-
counts, if either, best matches psychological reality would be an interesting question to pursue.
For purposes of analyzing non-native differences, however, we proceed without resolving such
questions.

It is perhaps worth also noting that in Dimension 3 the loadings of features for the two
speakers are symmetric: past-future mirror images across the point of interest (0 milliseconds).
We do not ascribe any deep significance to this: PCA often results in dimensions with some
form of symmetry, and this tendency is stronger here, because the features computed for the
two sides are identical, and because the two sides are slightly correlated, due to a small amount
of cross-track bleeding.

For reasons of space we below only discuss the loadings when rel-
evant to non-native differences. (All the loadings are available at
http://www.cs.utep.edu/nigel/l2english/, both numerically and as visu-
alizations.)

Example 1 (soc008@165.1)

A: I just need to get that lab done, and I’m done with that lab.
B: What, what about, where, where did you guys get in the homework?

While Dimension 3 was easy to understand, this was not always true. To interpret each
dimension we applied an eclectic mix of methods. We considered feature loadings in rela-
tion to information in the literature on the pragmatic functions of the strongly-loaded features.
We also examined places in the corpus where a construction was strongly present. We used
qualitative-inductive methods to find commonalities among such places, considering different
pragmatic aspects, as revealed by the behaviors of both participants in the immediate context,
and occasionally also engaging our own intuitions of what was being conveyed by the observed
prosodic form, in contrast to other forms that might have appeared. For some dimensions the
commonalities were obvious, both from the features and the examples examined. For others the
commonality did not become clear until we had examined many examples, and then another
dozen or so to confirm the general tendency.

The interpretation process was complicated for several reasons. One is that the pragmatic
force of any individual construction depends on the local context, including other constructions
simultaneously present. For example, the swift turn exchange seen in Example 1, is not only high on Dimension 3, but also fairly high on Dimension 2, since there is a lot of talk by both speakers, and low on dimension 16, primarily since the last syllable of the bottom speaker is short and creaky, indicating his attitude towards the lab. Another reason interpretation was complicated was individual differences in behavior and uses. For example, at some of the times when one speaker’s prosody was high on Dimension 10, it seemed he was being provocative, somewhat different from the more common use, of disagreeing or diverging, although not unrelated. More generally, the constructions appear polysemous, for example, when low on Dimension 10, one speaker was often producing a short check questions, and/or saying something they expected the other to agree with, and the other usually did. In the table we generalize this as speakers “aligning,” but for other dimensions we sometimes list related functions rather than generalizing over them. Other analysts could make other choices. An additional complication for the analysis was the presence of creative and deliberate uses of prosody, including uses for non-literal meanings and for reported speech (Rao, 2013b; Estelles-Arguedas, in press, 2015), many of which did not follow the general tendencies.

Our interpretations are summarized in the third column in Table 2. Again these must be considered only tendencies: not every time point in the corpus prosodically fitting a listed construction also exhibits the listed function or meaning, for the reasons noted above. Each of these really deserves a paper in itself, to treat its form and function in detail, and to relate it to
alternate ways of describing the phenomena. However, for reasons of space, we discuss further only those which turn out to be used differently by non-natives or otherwise interesting.

Ideally we would like a full and final listing of the prosodic constructions of English before going on to examine the non-native differences. Of course this listing falls short. In addition to the issues noted above, the details of the feature set we chose are somewhat arbitrary, and we have observed that with different feature sets the resulting dimensions vary slightly. Further, our method did not identify exclusively dialog-related aspects of prosody, nor, certainly, all of the dialog-relevant constructions, not least because our features only cover six-second spans. Thus we do not propose this listing as a universally valid or objectively-verified list of the pragmatic functions of English prosody. Nevertheless all of these functions have been previously identified in the literature as important for dialog (Wells, 2006; International Standards Organization, 2012; Riggenbach, 1991; Couper-Kuhlen and Selting, 1996; Sidnell, 2011; Clark, 1996; Reed, 2010), and PCA-based studies of other corpora have revealed similar constructions and functions (Ward and Vega, 2012; Ward, 2014), so this list does seem likely to be useful. For example, it may be useful for English-language curriculum design (Diepenbroek and Derwing, 2013; Busa, 2012). Below we use it for the analysis of non-native behaviors.

5. Discovering Differences in Construction Use

Expecting the dialog-prosodic deficit of non-natives to be largely associated with specific constructions, we set out to determine which. Given the dimensions, the prosody in the immediate context of every point can be represented as the sum of the contributions of all the dimensions active at that time; typically some positively and some negatively. Thus we applied the loadings discovered by PCA to samples taken every 10 milliseconds throughout the data. This was fully automatic; computationally just the dot product. We then computed statistics, across all the non-native data and timepoints, on the usage of each construction, to identify differences between the natives and the non-natives. Figure 5 overviews this workflow.

Figure 5: Workflow for Finding the Non-Natives’ Construction-Use Distributions.
To test this method, we first applied it to another corpus of English, to see whether it would find differences that made sense. Specifically we used 7 dialogs (14-speakers, 35 minutes total) from the well-known Switchboard corpus (Godfrey et al., 1992). Although also dyadic conversations in American English, in these conversations the participants were strangers, they were generally much older, they spoke by telephone, and they started with suggested topics, such as crime and childcare, although most of the conversations rapidly moved on to other topics.

On Dimension 2 there was a large distribution difference relative to the reference data, as seen in Figure 6: the Switchboard speakers exhibit fewer high values on this dimension, meaning that less often were both participants are talking or laughing simultaneously. This can be readily observed, and is unsurprising, given that more formal turn taking is generally found in telephone conversations and in conversations between strangers.

For reasons of space we do not show the other distributions, but the columns 2 and 3 of Table 3 show the means and standard deviations of Switchboard speakers’ uses of the top 16 dimensions, plus 2 more. The mean for the reference set is zero on each dimension, due to normalization. Both the means and the standard deviations shown have been normalized by (divided by) by the standard deviation of same dimension in the reference set. Thus the units for the means are standard deviations, with negative values where the Switchboard speakers tended to be lower on that dimension and positive values when higher. For the standard deviations, values less than 1 mean the Switchboard speakers had narrower distributions than the reference speakers, and greater values wider distributions. We noted several differences.

For Dimension 10, the Switchboard speakers tend to the negative side. According to our interpretations, this means that they exhibit more alignment and agreement than the reference dialogs. This is again readily observable and unsurprising: strangers who have no desired outcomes beyond having a pleasant conversation tend to find things they can agree on. Prosodically, the 10-lo construction involves quieter-than-average utterances, with gradually increasing pitch and occasional moments of faster speech with expanded pitch range.
Dimension 14 also shows a large difference, tending to the low side, meaning more talk about personal situations and less about mutually-known third parties. This may relate to the lack of shared context and to a tendency to self-disclosure in a safe context as here when talking anonymously. Prosodically, the 14-low construction involves choppy short utterances with very brief pauses.

For Dimension 15, the Switchboard dialogs tend to higher values, expressing negative feelings about someone or something distant. This is again readily observable and unsurprising, since many of these conversations touch on issues like crime, childcare, taxes, and schools, and involve complaining about politics and institutions. This construction is complex, involving a sharp decrease in speaking rate and pitch range, resulting in a region of narrow pitch for about a second, for some speakers giving a muttering effect.

These examples indicate that this method is successful at revealing differences in prosodic behavior that reflect real differences in dialog activities and interaction styles.

6. Data

For our non-native data we chose a collection of advanced non-native dialogs. This choice was inspired by reports of those who, despite years of immersion, still have weak prosodic skills (Zimmerer et al., 2014), and from personal observation of friends and family members for which this is the case. In this we diverge from the common practice of studying non-native prosody using data from learners still in language classes. This section summarizes some of the important properties of our data sets; the details appear elsewhere (Ward and Gallardo, 2015).

We chose to record non-natives who had completed at least one semester of college in the United States. We excluded those with significant non-classroom English-language experience before age 17 or who otherwise seemed to have almost-native conversation skills. The corpus speakers had strong vocabulary and good fluency, but all were noticeably non-native in pronunciation. All had grown up in Northern Mexico and had Spanish as their native-language.

In this corpus the conversations were spontaneous and not topic-constrained. While there are advantages to using conversation data based on scripted or role-play interactions, spontaneous conversations may more closely approximate real-world interaction. While producing appropriate intonation in monolog or scripted dialog is, in essence, “merely” a question of choosing the appropriate intonation contour and applying it to a sentence, producing appropriate prosody in dialog is a much greater challenge. Realization of each construction requires using multiple prosodic features in specific temporal configurations. Moreover multiple constructions must often be simultaneously realized. This all must be done under the pressure of choosing words and listening to and coordinating with the dialog partner.

Each non-native was recorded in dialog with a native-speaker partner. We obtained 9 conversations, of about 10 minutes each, including 6 different non-native speakers.

In addition to this primary collection, of non-native speakers talking with monolingual English speakers, we recorded two other data sets: one of monolingual native English speakers talking with other native speakers, and one of Spanish speakers speaking together in Spanish. Both of these collections included many speakers from the primary collection. All were recorded in the same environment with the same equipment.
Finally, for other comparisons, we use two other data sets, Switchboard and the Social Speech corpus, as discussed above.

7. Examining Non-Natives’ Prosodic-Behavior Differences

Finally, after all this preparation, we were ready to identify where non-native prosody differs. We expected to find major differences.

Columns 4 through 7 of Table 3 show the means and standard deviations on each dimension for the monolingual natives and the non-natives (always in the A-speaker track). Most relevant are dimensions where the non-native behaviors differ not only from the reference data, but also from the native-speaker subset of the corpus. While we expect variation between any two random sets of speakers, if the non-natives differ from both the native data and the reference data, that suggests a real difference.

Comparing the means (columns 4 and 6 of the table), we first note the lack of striking differences: unexpectedly, the non-native means were mostly closer to the native means than were the Switchboard speakers’ means. We examined the differences statistically, using unmatched, two-tailed heteroskedastic t-tests with Bonferroni corrections. When we took as independent samples the means of each speaker’s values there were no statistically significant differences, doubtless due to the small number of speakers. When instead we took the speakers’ means over 30-second samples as independent, some were, as shown by the asterisks in column 6 of the table. The rest of this section discusses the dimensions with large or significant differences.

For Dimensions 1 and 2 the averages were also noticeably different. These suggest tendencies for the non-natives to speak rather more than the natives and to have less overlapped speech, but do not obviously involve construction-skill differences.

For Dimension 3, although there was only a tiny difference in means, the non-natives exhibited narrower variation. This suggests fewer (or less prototypical) examples of swift turn takes and turn yields.

For Dimension 4 the average was slightly lower. Dimension 4-hi involved peaks in the interlocutor’s volume, speaking rate, and creakiness about two seconds apart, with an interleaved short contribution by the other speaker, which was usually a backchannel, short question, suggestion of word that the other was looking for, or laugh. This suggests that the non-natives less commonly produced small utterances precisely interleaved in the other’s turn.

For Dimension 6 the non-natives averaged slightly higher, indicating a tendency to show empathy more often or more strongly. The prosody of Dimension 6-hi was complex, including two nearby regions of high volume, fast speaking rate, wide pitch range, and creakiness. In Example 2, these were realized on those two and yeah, it’s hard

Example 2 (nn011@35.6)
B: the CSS was fun too, but the PHP
A: PHP, yeah, you have to combine them, those two; yeah, it’s hard

For Dimension 10 the non-natives averaged lower, suggesting a greater tendency to align or agree with the other person; this also was observed. In Example 3 the words squeeze you
(addressed to an imagined dog) are fast, creaky and in wide pitch range, and they leads into a high-pitched laugh. (Interestingly this construction resembles the Upgraded Assessment Construction discussed above, although the timing is not the same.)

Example 3 (nn007@126.8)
B: (about his attempt to use a dog as a pillow) I’m sorry but you’re so fluffy
A: laughs, I just want to use it as a pillow, and squeeze you, laughs

While our focus has been on the top 16 dimensions, we ran the statistics down further, and noted significant differences for some others. Space permits discussion of only two.

For Dimension 18 the non-natives had fewer low values, suggesting fewer positive-to-negative perspective shifts. Examples of these included *(my favorite class is) programming languages, because it’s the only hope I have (to get an A) and the material’s really easy, so a lot of people, like stop paying attention to the class, and that’s what I did (and that’s why I failed).* Prosodically the 18-low construction involves a region of high pitch and high pitch range, followed directly by a region of low pitch.

For Dimension 21 the non-natives averaged lower. Dimension 21-lo was associated with filler production while recalling something from memory, where the filler was flat in pitch and initially creaky. 21-hi was associated with a rushed start to grab or hold a turn, with wide pitch range, and often followed by a reformulation. Fillers were indeed common in the non-native utterances, and aggressive turn starts rare.

In every case, the differences in behaviors suggested by the statistical analysis were confirmed by listening to the data and noting the common dialog activities, stances, and behaviors of the non-natives.

7.1 Discussion

While the differences found are interesting, it is probably more significant that for most of the functions on our list there were only miniscule differences in means, including for constructions expressing: involvement, embarrassment, amusement, empathy, being factual, speaking more personally, being confident, being disfluent, topic development, stalling, new information, complaints, displeasure and positive assessments. Listening to the dialogs, there were indeed many examples of the non-natives doing all these things with appropriate prosody.

Nevertheless there are differences. Returning to the question of where non-natives lack skill, we investigated by listening to places where these dimensions (3, 4, 6, 10, 18 and 21), were strongly involved, looking for associated patterns of awkwardness or breakdown. Contrary to expectation, we found no evidence of consistent weaknesses.

Thus we failed to observe the expected construction-specific skill deficits. Indeed there are obvious alternative explanations of the observed differences. The increased use of Dimensions 10-lo (alignment) and 6-hi (displaying empathy), can both be related to well-attested norms of Mexican culture (Condon, 1985). It seems likely that the non-natives were behaving as they thought appropriate, rather than trying to behave like natives but failing due to a prosodic skill deficit. Similarly, the reduced use of Dimension 4-lo (aggressive/rushed turn holding), could
be explained as a choice not to use (or not to acquire) a behavior that can seem rude. The reduced prevalence of 4-lo, 3-lo, and 3-hi (interpolated short contributions, and swift turn takes and yields) may reflect processing limitations: non-natives may be slow to comprehend and/or need more time to create fluent utterances (Wiberg, 2003).

In sum, we found effects of interaction style and adherence to cultural norms for conversation behavior (Tannen, 1989), but no real evidence for prosodic-skill deficits.

8. Remarks on L2 Prosody and Spanish Prosody

Thus we have found little evidence in support of the existence of deficits in specific prosodic skills, at least for this population of non-natives. This could be because there are no such deficits, or because our method or data was inadequate in some way. In Section 5 we addressed one such issue, and found that the method was indeed able to detect differences. In this section we consider two other issues, relating to the non-native population used and to the differences between Spanish and English.

8.1 Non-Nativisms in our Corpus

We selected the non-natives for the corpus based on our perceptions of some degree of awkwardness with English, but without explicit consideration of prosodic behaviors. Accordingly we did a post-hoc examination to see whether there were, in fact, any non-native aspects to their prosody, regardless of whether these related to any specific construction or pragmatic function.

There were indeed such differences: their prosody was non-native in many ways, most saliently in having: a tendency to syllable-timing rather than stress timing, unusual patterns of utterance-final lengthening or lack of lengthening, and misplaced stresses and accents. We also observed several instances of very wide pitch range and very long continuous voicing. Example 4 is one, on the word the as seen in Figure 7.

Example 4 (nn005@12.8)

I don’t think we’ve met before. I’m M.

I’m R. But I think that, well, we had theeeeee database class [together]

This is an instance of the circumflex prosodic pattern common in Mexican Spanish (de la Mota et al., 2010). Here the non-natives’ dialog-prosody differences appear to reflect not something missing but something added: not English skill deficits but the use of L_1 behaviors. (In terms of constructions, this was 13-lo on the Spanish inventory, described below, involving a wide pitch range and a long peak, used often for grounding related to feelings.)

This examination supports the same conclusion we reached from the statistics: the prosodic weaknesses, are, contrary to our original expectation and to Ramirez Verdugo’s suggestions, not primarily related to dialog functions.
8.2 Some Prosodic Constructions of Spanish

We chose to use data from native speakers of Spanish for our corpus based on convenience, without first considering whether Spanish prosody was strongly different from English prosody.

Of course, the segmental, lexical, and syntactic aspects of Spanish prosody are known to differ from English, as are some the expressions of some pragmatic functions, including questions, back-channeling, complaining, and expressing probability and usuality (Bowen, 1956; Farias, 2013; Hualde, 2005; Berry, 1994; Ramirez Verdugo, 2005; Rivera and Ward, 2006; Rao, 2013a; Santiago and Delais-Roussarie, 2015; de la Mota et al., 2010). Spanish also expresses some pragmatic functions less with prosody than with word order, discourse particles, or gesture (Borras-Comes et al., 2014; Ortega-Llebaria and Colantoni, 2014).

So Spanish prosody does not lack significant differences from English. Nevertheless, the more dialog-related aspects could be more similar, given that interaction patterns in general are thought to have strong universal tendencies (Levinson, 2006). To investigate, we applied PCA to the Spanish-dialog subset of the corpus, 90 minutes in 9 dialogs, with a total of 12 speakers, and interpreted the constructions.

As Table 4 shows, many of the common functions were also seen in English, but some were not; for example, wry humor was not in the top 32 constructions of English. (This involved a few seconds of creaky voice and a fast speaking rate, including a short period of increased pitch range in the vicinity of a short pause.)

Many of the Spanish functions of prosody are similar to those seen in English, but some with subtly different prosodic realizations. For example, the turn yield construction (3-lo) is very like that in English but lacks the small pitch rise about a second before the turn end. (Of course, many turn-ends in Spanish include such a rise, but these two behaviors are statistically more independent than in English.) Also high involvement in Spanish (4-lo) loads positively on all the same features as involvement in English, except that in English amplitude is most highly weighted feature, but in Spanish it is pitch.

Thus Spanish dialog prosody is, as expected, non-trivially different from that of English, making the non-natives’ mastery of the English constructions indeed impressive.
9. Summary and Open Questions

We have presented a method able to take data collected from two populations and automatically find prosodic constructions in which the behaviors most differ.

We applied this method to recordings of Spanish-native speakers of English, identifying several respects in which their usage of prosodic constructions was different, including those relating to turn-yield, alignment, and empathy.

Overall, we failed to find pervasive deficits in dialog-related prosodic skills and failed to find evidence of non-natives lacking skills with specific constructions, both contrary to expectation. Despite the limitations of the method, there is evidence that, had there been differences, this method would have found them. This suggests that the prosodic aspects of interaction are highly learnable.

This is interesting in light of the increasing interest in exploring the learnability and teachability of interaction patterns in dialog (Betz and Huth, 2014), and is in some ways surprising. Traditional pedagogy puts conversation at the top of the skill pyramid, and dialog-related prosody is usually taught late if at all, so it is unexpected to find that even advanced non-natives can apparently master this, despite prosodic weaknesses in other areas. But from another perspective this is easy to understand: for people using a language in everyday interactions, probably it is in regards to the dialog-related uses of prosody that they receive the most immediate (although indirect) feedback.

This leaves many open questions, including:

What about the prosody of less-advanced learners? The non-natives in the corpus all had at least one semester of English immersion. Learners without an immersion experience, or non-natives having immersion later in life, may well exhibit clearer dialog-prosody deficits, including those related to specific constructions.

What are the details of each construction, and how do they work together in actual dialog? Here we relied heavily on automated methods, seeking a big-picture inventory and broad-brushstroke understanding. Like many other big-data methods this was efficient (Swanson and Charniak, 2014), but has its limits. Further examination using more sensitive methods could better tie these construction-based descriptions to those developed within other theoretical frameworks. The resulting detailed understanding of dialog-prosody would be invaluable for many purposes, including instruction of pre-immersion language learners.

Which non-native differences in prosody matter? On the one hand, differences may “make the speaker sound strange, typical of their origin, boring or annoying . . . [but] . . . not cause much of an actual breakdown in communication” (Wells, 2014). On the other, such differences may affect perceptions and dialog outcomes (Tannen, 2005; Curhan and Pentland, 2007). Identifying which differences matter will require both broader consideration of interpersonal and social factors, and also more work on the nuts and bolts of dialog prosody.

Acknowledgments

We thank the participants who let us record their conversations, and Richard Ogden, David Novick, David DeVault, Juergen Trouvain, and Francisco Torreira for discussion. This work
was supported in part by the US National Science Foundation by Research Experience for Undergraduates supplements to IIS 191-4868 and IIS 144-9093, and in part by the Fulbright Program.

References

Anais G. Rivera and Nigel Ward. Prosodic cues that lead to back-channel feedback in Northern Mexican Spanish. HDLS-7 Conference, High Desert Linguistics Society, University of New Mexico, 2006.

<table>
<thead>
<tr>
<th>#</th>
<th>%</th>
<th>Lo:</th>
<th>Hi:</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>17%</td>
<td>Speaker A speaking, Speaker B silent</td>
<td>§3.4, §7</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>hi: Speaker B speaking, Speaker A silent</td>
<td>§3.4, §7</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>8%</td>
<td>lo: both speakers silent</td>
<td>§5, §7</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>hi: both speakers talking together or laughing together</td>
<td>§5, §7</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>4%</td>
<td>lo: B yields the turn and A takes the turn</td>
<td>§4, §7</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>hi: A yields the turn and B takes the turn</td>
<td>§4, §7, §8.2</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>3%</td>
<td>lo: B makes a small contribution during A’s turn</td>
<td>§7</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>hi: A makes a small contribution during B’s turn</td>
<td>§7</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>3%</td>
<td>lo: high involvement</td>
<td>§8.2</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>hi: low involvement</td>
<td>§8.2</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>3%</td>
<td>lo: soliciting empathy</td>
<td>§7</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>hi: showing empathy, completing the other’s sentence</td>
<td>§7</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>3%</td>
<td>lo: embarrassment, surprise, often laughter</td>
<td>§7</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>hi: giving factual information, unemotional, talking about a third party’s actions</td>
<td>§7</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>2%</td>
<td>lo: A confident, speaking with authority or based on personal experience</td>
<td>§7</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>hi: B confident, speaking with authority or based on personal experience</td>
<td>§7</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>2%</td>
<td>lo: A disfluent, hesitant, or silent; B silent or fluent</td>
<td>§7</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>hi: B disfluent, hesitant, or silent; A silent or fluent</td>
<td>§7</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>2%</td>
<td>lo: speakers aligning</td>
<td>§4, §5, §7</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>hi: speakers disagreeing or diverging</td>
<td>§4</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>2%</td>
<td>lo: topic elaboration, transition to a new aspect of the topic</td>
<td>§4</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>hi: isolated comments not part of a larger topic</td>
<td>§4</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>1%</td>
<td>lo: post-completion, turn yield</td>
<td>§7</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>hi: forward-looking short utterance, turn hold</td>
<td>§7</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>1%</td>
<td>lo: lack of new information</td>
<td>§5</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>hi: knowledge asymmetry between speakers</td>
<td>§5</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>1%</td>
<td>lo: personal-situation comments</td>
<td>§5</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>hi: complaints about third parties</td>
<td>§5</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>1%</td>
<td>lo: being positive about one’s own prospects or a past experience</td>
<td>§5</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>hi: negative feeling about something/someone distant</td>
<td>§5</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>1%</td>
<td>lo: displeasure, annoyance</td>
<td>§4</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>hi: amusement, positive evaluation of something/someone</td>
<td>§4</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>1%</td>
<td>lo: A reveals downside or B reveals silver lining</td>
<td>§7</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>hi: B reveals downside or A reveals silver lining</td>
<td>§7</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>1%</td>
<td>lo: memory recall</td>
<td>§7</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>hi: rushed turn grab or hold</td>
<td>§7</td>
<td></td>
</tr>
</tbody>
</table>

Table 2: The top sixteen prosodic dimensions in the reference corpus, plus two more. The second field is the amount of variance explained by the dimension. The third field summarizes our interpretations of the dimension when negatively or positively present, that is, the “lo-side” and “hi-side” constructions, as discussed below. The fourth field indexes further discussion.
Table 3: Statistics on dimension use in three data collections, relative to the reference set. Bold- ing marks the largest differences between Switchboard and the reference set, and the largest differences between the non-natives and the natives. Asterisks indicate significant native/non-native differences.

<table>
<thead>
<tr>
<th>dimension</th>
<th>Switchboard mean</th>
<th>Switchboard std. dev.</th>
<th>natives mean</th>
<th>natives std. dev.</th>
<th>non-natives mean</th>
<th>non-natives std. dev.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-0.00</td>
<td>1.22</td>
<td>-0.00</td>
<td>1.05</td>
<td>-0.11</td>
<td>0.97</td>
</tr>
<tr>
<td>2</td>
<td>-0.31</td>
<td>0.53</td>
<td>-0.33</td>
<td>0.76</td>
<td>-0.45</td>
<td>0.75</td>
</tr>
<tr>
<td>3</td>
<td>0.00</td>
<td>0.91</td>
<td>0.00</td>
<td>0.91</td>
<td>0.01</td>
<td>0.86</td>
</tr>
<tr>
<td>4</td>
<td>0.00</td>
<td>0.87</td>
<td>-0.00</td>
<td>0.85</td>
<td>-0.05</td>
<td>0.83</td>
</tr>
<tr>
<td>5</td>
<td>-0.12</td>
<td>0.74</td>
<td>-0.01</td>
<td>0.94</td>
<td>0.01</td>
<td>0.91</td>
</tr>
<tr>
<td>6</td>
<td>-0.17</td>
<td>0.65</td>
<td>0.10</td>
<td>0.86</td>
<td>0.14</td>
<td>0.84</td>
</tr>
<tr>
<td>7</td>
<td>-0.06</td>
<td>0.86</td>
<td>-0.06</td>
<td>0.97</td>
<td>-0.03</td>
<td>0.97</td>
</tr>
<tr>
<td>8</td>
<td>-0.00</td>
<td>0.81</td>
<td>0.00</td>
<td>0.86</td>
<td>0.03</td>
<td>0.86</td>
</tr>
<tr>
<td>9</td>
<td>0.00</td>
<td>0.85</td>
<td>0.00</td>
<td>0.82</td>
<td>-0.00</td>
<td>0.81</td>
</tr>
<tr>
<td>10</td>
<td>-0.43</td>
<td>0.97</td>
<td>-0.10</td>
<td>1.01</td>
<td>-0.21</td>
<td>0.99</td>
</tr>
<tr>
<td>11</td>
<td>-0.00</td>
<td>0.94</td>
<td>-0.00</td>
<td>0.91</td>
<td>-0.01</td>
<td>0.93</td>
</tr>
<tr>
<td>12</td>
<td>-0.00</td>
<td>0.92</td>
<td>-0.00</td>
<td>0.89</td>
<td>-0.00</td>
<td>0.89</td>
</tr>
<tr>
<td>13</td>
<td>0.11</td>
<td>0.71</td>
<td>0.03</td>
<td>0.91</td>
<td>0.03</td>
<td>0.90</td>
</tr>
<tr>
<td>14</td>
<td>-0.33</td>
<td>0.79</td>
<td>-0.07</td>
<td>0.94</td>
<td>-0.09</td>
<td>0.95</td>
</tr>
<tr>
<td>15</td>
<td>0.37</td>
<td>0.87</td>
<td>0.07</td>
<td>0.97</td>
<td>0.07</td>
<td>0.98</td>
</tr>
<tr>
<td>16</td>
<td>0.00</td>
<td>0.88</td>
<td>-0.00</td>
<td>0.92</td>
<td>-0.02</td>
<td>0.92</td>
</tr>
<tr>
<td>18</td>
<td>-0.00</td>
<td>1.02</td>
<td>-0.00</td>
<td>0.97</td>
<td>0.11</td>
<td>0.91</td>
</tr>
<tr>
<td>21</td>
<td>0.00</td>
<td>0.95</td>
<td>0.00</td>
<td>0.88</td>
<td>-0.13</td>
<td>0.87</td>
</tr>
</tbody>
</table>

Table 4: Some of the Major Prosodic Constructions of Spanish

1	19%	lo: speaker B speaking, speaker A silent
		hi: speaker A speaking, Speaker B silent
2	7%	lo: both speakers silent
		hi: both speakers talking together or laughing together
3	4%	lo: A yielding the turn
		hi: A taking the turn
4	3%	lo: high involvement
		hi: low involvement
5	3%	lo: A interpolates a backchannel or short question
		hi: B interpolates a backchannel or short question
6	3%	lo: A cues a continuation or response by B, with a short question or backchannel
		hi: B cues a continuation or response by A
7	3%	lo: turn conflict (start at same time, one yields)
		hi: turn conflict (end at same time, start up again at same time)
8	2%	lo: wry humor
		hi: uncertainty about something, or about how to word something