In class we gave examples of iterative and recursive methods that receive n as a parameter and take time $O(f(n))$ to run, for several different functions $f(n)$. For example, the following method runs in time $O(n^2)$

```java
public static void p1(int n){
    if(n>0){
        for(int i=0;i<n;i++)
            for (int j=0;j<n;j++)
                System.out.println(i);
    }
}

public static void p2(int n){
    if(n>0){
        for(int i=0;i<n;i++)
            System.out.println(i);
        p2(n-1);
    }
}
```

For each of the following big-O running times, write an iterative and a recursive method that runs in that time (thus you will write a total of 18 methods):

a) $O(1)$
b) $O(\log n)$
c) $O(n)$
d) $O(n \log n)$
e) $O(n^2)$
f) $O(n^2 \log n)$
g) $O(n^3)$
h) $O(n^3 \log n)$
i) $O(2^n)$

Perform experiments using several different values of n for every method you wrote and show the resulting running times. Do your experimental results match your analytical results?

Write a report describing your work. We are particularly interested in your observations about the behavior of different methods for each value of n. You may want to use graphs or plots to illustrate this. For example, the following figure illustrates the running time of a $O(n^2)$ method as a function of n.

CS2302 Data Structures
Fall 2013
Lab 1
Due Wednesday, September 11, 2013, 11:59 p.m.