Your lab assignment consists of implementing two algorithms (described below) to sort lists of integers implemented as a reference-based lists. Your program must prompt the user to select the length of the list, whether the elements will be entered manually or generated randomly, and the choice of algorithm to use. As the elements are entered they must be stored in a reference-based list (you may consider storing them in the inverse order in which they are entered). After that, the selected method must be called to sort the list, and finally you should display the resulting sorted list and the time it took to sort it.

Algorithm A starts with the original list of elements and an initially empty sorted list, and repeatedly finds the node that contains the element with the maximum value in the original list and moves it to the sorted list, until the original list is empty.

SortListA(L)

SortedList = empty list
while L is not empty
 x = node with maximum element in L
 remove x from L
 add x at the beginning of SortedList;
return SortedList

Algorithm B, takes the first element of the list as pivot, and splits the list into three lists; the first list contains the elements that are smaller than the pivot, the second contains the pivot itself, and the third contains the elements that are greater or equal to the pivot. Then the algorithm recursively sorts the first and the third lists, and finally it concatenates the first list, now sorted, the list that contains the pivot, and the third list, also sorted.

SortListB(L)
If length(L) >1
 let f be the first node in L
 remove f from L
 split L into three lists as follows:
 L1 that contains all the elements that smaller that the element in f
 L2 that contains (only) f
 L3 that contains the elements of L that are greater or equal to the element in f
 L1 = SortListB(L1);
 L3 = SortListB(L3)
 L = concatenate(L1,L2,L3);
return L

Do not use the java-provided implementation of linked lists. Instead, use the low-level implementation based on iNodes as defined in class. As usual, write a report describing your results, including plots showing comparative running times for various list lengths.