1. (15 points) Determine the big-O running time with respect to \(n \) of each of the following methods:

```java
public static void p1(int n){
    for(int i=1;i<n;i=i*2)
        System.out.println(i);
}

public static void p2(int n){
    for(int i=100;i<n;i++)
        System.out.println(i);
}

public static void p3(int n){
    for(int i=0;i<n;i=i+n)
        System.out.println(i);
}

public static void p4(int n){
    while (n>0)
        n=n-2;
}

public static void p5(int n){
    for(int i=0;i<n;i++)
        for(int j=i;j<n;j++)
            System.out.println(i);
}

public static void p6(int n){
    for(int i=0;i<n;i++)
        p2(n);
    p5(n);
}

public static void p7(int n){
    p1(n);
    p2(n);
}
```

2. (25 points) For each of the following recursive methods, write a recurrence of the form \(T(n) = aT(f(n)) + g(n) \) to describe its running time. Then solve your recurrences using the iteration method or the Master theorem.

```java
public static void r1(int n){
    if(n>0){
        r1(n-1);
        System.out.print(n+" ");
        r1(n-1);
    }
}

public static void r2(int n){
    if (n>0) {
        System.out.println(n);
        r2(n/2);
        r2(n/2);
    }
}
```
public static void r3(int n){
 if (n>0) {
 for(int i=0;i<n;i++)
 System.out.print(i);
 r3(n/2);
 r3(n/2);
 }
}

public static void r4(int n){
 if(n>0){
 for(int i=0;i<4;i++)
 r4(n/2);
 for(int i=1;i<=n;i++)
 for(int j=1;j<=n;j++)
 System.out.println(i);
 }
}

public static void r5(int n){
 if(n>0){
 for(int i=0;i<n;i++)
 for(int j=0;j<n;j++)
 System.out.println(i);
 r5(n/2);
 r5(n/2);
 }
}

3. (10 points) Selection sort takes \(1 \mu s\) \((1 \times 10^{-6}s)\) to sort an array of size 1000. What is the largest array that it can sort in \(10 ms\) \((10 \times 10^{-3}s)\)?

4. (12 points) If a program solves the towers of Hanoi problem in for 30 disks in 1 minute, how long does it take to solve the problem with 24 disks? How about 60 disks?

5. Solve \(T(n) = T(n - 1) + n\) by iteration.

6. Solve \(T(n) = 2T(n/2) + 1\) using a recursion tree.

7. We have four algorithms that run in \(O(1)\), \(O(n)\), \(O(n^2)\) and \(O(n^3)\). Suppose that for a particular computer and a value of \(n = 1000\), it took the following times for each algorithm to finish:

 (a) \(O(1)\) - 100 \(\mu s\)
 (b) \(O(n)\) - 50 \(\mu s\)
 (c) \(O(n^2)\) - 20 \(\mu s\)
 (d) \(O(n^3)\) - 5 \(\mu s\)

 Approximately, how long would it take each of the algorithms to run if \(n = 1,000,000\)? Recall that \(1 \mu s = 1 \times 10^{-6}s\).

8. (30 points) Write two recursive methods to add all the elements in an array A as follows:

 (a) Method 1: Return the last element of the (sub)array plus the sum of all remaining elements in the (sub)array. If the (sub)array has no elements, return 0. Hint: Your method should receive the array and the index of the last element to process, thus the initial call would be \(arraySum(A, A.length-1)\).
 (b) Method 2: Return the sum of the first half of the (sub)array plus the sum of the second half of the (sub)array. If the (sub)array has no elements, return 0. Hint: Your method should receive the array and the index of the first and last element to process, thus the initial call would be \(arraySum(A, 0, A.length-1)\).

 For each of your methods, write and solve recurrences describing their running times.
9. (15 points) Consider the following methods:

```java
double int n){
    if(n>0){
        n++;
        q2(n/2);
        System.out.println(n);
    }
}

double int n)
```

```java
double q2(int n){
    System.out.println(n);
    q1(n/2);
    n++;
    System.out.println(n);
}
```

Trace the execution of q1(6). Draw the stack of activation records after each method call and show the output that would be produced.

10. (10 points) Write a method that receives a reference to the first node of a list of iNode objects and an integer \(k \) and determines if \(k \) is in the list.

11. (10 points) What is the output of the following code fragment:

```java
iNode x = new iNode(10);
for(int i=3;i>0;i=i-1)
    x = new iNode(i,x);
iNode y = new iNode(20,x);
iNode z = new iNode(30,y);
printList(x);
printList(y);
printList(z);
y.next.item = 8;
printList(x);
y= y.next;
printList(x);
z= y.next;
z.next = null;
printList(x);
printList(y);
```