CS 4365/5354
Deeper Learning
Exploding/vanishing gradient problem

Recall:
• \(y = \sigma(z) ; z = W_2 \text{relu}(W_1(\text{relu}(W_0 x + b_0) + b_1) + b_2) \)

For learning to be possible, we need small changes in \(x \) to correspond to small changes in \(z \) (similar examples should produce similar network outputs) and large changes in \(x \) to correspond to large changes in \(z \).
• In other words, we want \(|dz/dx| \approx 1|\)
Exploding/vanishing gradient problem

For simplicity, let’s assume relus work in linear part and ignore biases. Then

- $z = W_2 W_1 W_0 x$
- $\frac{dz}{dx} = W_2 W_1 W_0$
- $|\frac{dz}{dx}| = |W_2 W_1 W_0|$
Exploding/vanishing gradient problem

In case of a very deep network, this would be:

- \(\frac{dz}{dx} = W_n W_{n-1} \cdots W_2 W_1 W_0 \)
- If we initialize weights randomly, \(|W_n W_{n-1} \cdots W_2 W_1 W_0|\) is likely to be very large OR very small
- This is known as the exploding/vanishing gradient problem
Exploding/vanishing gradient problem

Solutions:

1. Initialization:
 - Choose the variance of the weights in such a way that:

 \[|W_0 x| \approx |x|, \quad |W_1 W_0 x| \approx |W_0 x|, \quad |W_2 W_1 W_0 x| \approx |W_1 W_0 x|, \]
 - Several ways to do this. Weights can be chosen from uniform or normal distribution
 - Keras initializers: He, Glorot

2. Optimization:
 - Much of the problem is due to a single learning rate for all parameters. This is what conventional SGD does.
 - Modern algorithms with different learning rates for different parameters:
 - Keras optimizers: RMSprop, Adadelta, Adam
How deep can we go?

Combining Adam and He/Glorot initialization networks with up to 30 layers have been trained successfully.

Other ideas: data driven initialization - use first training batch to figure out initial weights

Can we go deeper?
Can we go deeper?

Batch Normalization
Normalize inputs and outputs for every batch
- Recall we want:
 \[|W_0 x| \approx |x|, \ |W_1 W_0 x| \approx |W_0 x|, \ |W_2 W_1 W_0 x| \approx |W_1 W_0 x| \]
Batch Normalization (BN)

\[x \xrightarrow{\text{layer}} \hat{x} = \frac{x - \mu}{\sigma} \xrightarrow{\gamma, \beta} y = \gamma \hat{x} + \beta \]

- \(\mu \): mean of \(x \) in mini-batch
- \(\sigma \): std of \(x \) in mini-batch
- \(\gamma \): scale
- \(\beta \): shift
- \(\mu, \sigma \): functions of \(x \), analogous to responses
- \(\gamma, \beta \): parameters to be learned, analogous to weights
Batch Normalization

Allowed networks to be trained with fewer training examples
Allowed deeper networks (up to 60 layers)
Going Deeper

Deep Residual Learning

- Plain net

 $x \rightarrow \text{weight layer} \rightarrow \text{relu} \rightarrow \text{weight layer} \rightarrow \text{relu} \rightarrow H(x)$

$H(x)$ is any desired mapping, hope the 2 weight layers fit $H(x)$
Going Deeper

Deep Residual Learning

- Residual net

\[H(x) = F(x) + x \]

\[F(x) \]

weight layer

relu

identity \(x \)

weight layer

relu

\(H(x) \) is any desired mapping,

hope the 2 weight layers fit \(H(x) \)

hope the 2 weight layers fit \(F(x) \)

let \(H(x) = F(x) + x \)