CS4390 CS 4390 - Special Topic in Computer Science: Bio-related Data Structures and Algorithms
Fall 2013
Lab 1
Report due in class, September 12

Strings

1) Write a method that receives a string S and a character c and determines the number of times c appears in S.

2) Write a method that receives a string S and builds and returns a string that contains the characters in S in reverse.

3) Write a method that receives a string S and a character c and builds and returns a string that contains the characters in S except that all occurrences of c are removed.

4) Write a method that receives two strings S and T builds and returns a string that contains the characters in S followed by the characters in T. That is, it returns the concatenation of S and T.

5) Write a method that receives an integer n and a character c and builds and returns a string that contains c repeated n times.

6) Write a method that receives a string S and characters a and b and builds and returns a string that is identical to S except that every instance of a in S is replaced by b.

7) Write a method that receives a string S and builds and returns an array of characters that contains the same characters in S in the same order (that is, it converts a string into an array of characters).

8) Write a method that receives an array of characters C and builds and returns a string S that contains the same characters in C in the same order (that is, it converts an array of characters into a string).

9) A palindrome is a string that is identical to its reverse. Write a method that receives a string S and determines if it’s a palindrome.

1D Arrays

1) Write a method that receives a 1-D array of integers A and returns the sum of all the elements in A.

2) Write a method that receives a 1-D array of integers A and returns the smallest element in A.

3) Write a method that receives an integer n and a 1-D array of integers A and determines the number of times n appears in A.

4) Write a method that receives a 1-D array of integers A and determines if A is sorted in ascending order (that is, it returns true if A is sorted, false otherwise).

5) Write a method that receives a 1-D array of integers A and builds and returns a copy of A.

6) Write a method that receives a 1-D array of integers A and builds and returns an array containing the elements of A in reverse.
7) Write a method that receives integers m and n and builds and returns a 1-D array of integers of length m in which every element has a value of n.

8) Write a method that receives an integer n and builds and returns a 1-D array of integers of length n in which the first element has a value of 0, the second element has a value of 1, and so on.

9) Write a method that receives two 1-D array of integers A and B and computes the dot product of A and B. Recall that the dot product of two vectors u and v is \(d = u_0 \times v_0 + u_1 \times v_1 + u_2 \times v_2 + ... \)

10) Write a method that receives a 1-D array of integers A and rotates A. That is, it moves the first element of A to the last position, and moves every other element one place to the left (thus the original value of A[1] is stored in A[0], the original value of A[2] is stored in A[1] and so on).

2D Arrays

1) Write a method that receives a 9-by-9 2-D array of integers A and determines if A encodes a valid solution of the game of Sudoku.

Write a report describing your code, experiments and results, as described in the syllabus. Also, email the source code to your instructor at olacfuentes@gmail.com.