
Two-Dimensional Fitting of Brightness Profiles
in Galaxy Images with a Hybrid Algorithm

Juan Carlos Gomez, Olac Fuentes, and Ivanio Puerari

Instituto Nacional de Astrof́ısica Óptica y Electrónica
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Abstract. Fitting brightness profiles of galaxies in one dimension is
frequently done because it suffices for some applications and is simple
to implement, but many studies now resort to two-dimensional fitting,
because many well-resolved, nearby galaxies are often poorly fitted by
standard one-dimensional models. For the fitting we use a model based
on de Vaucoleurs and exponential functions that is represented as a set
of concentric generalized ellipses that fit the brightness profile of the
image. In the end, we have an artificial image that represents the light
distribution in the real image, then we make a comparison between such
artificial image and the original to measure how close the model is to
the real image. The problem can be seen as an optimization problem
because we need to minimize the difference between the original optical
image and the model, following a normalized Euclidean distance.
In this work we present a solution to such problem from a point of view
of optimization using a hybrid algorithm, based on the combination of
Evolution Strategies and the Quasi-Newton method. Results presented
here show that the hybrid algorithm is very well suited to solve the
problem, because it can find the solutions in almost all the cases and
with a relatively low cost.

1 Introduction

Galaxies span a wide range of morphology and luminosity, and a very useful way
to quantify them is to fit their light distribution. Fitting profiles for galaxies in
one dimension is frequently done because it suffices for some applications and is
simple to implement [5], but many studies now resort to two-dimensional fitting,
because many well-resolved, nearby galaxies are often poorly fitted by stan-
dard one-dimensional models. Although empirical techniques for galaxy fitting
and decomposition have led to a number of notable advances in understanding
galaxy formation and evolution, many galaxies with complex isophotes, ellip-
ticity changes, and position angle twists can be modelled accurately in two di-
mensions. We illustrated this by 5 examples, which include elliptical and spiral
galaxies displaying various levels of complexities. In one dimension, the galaxy
bulge and disk may appear to merge smoothly, which causes non-uniqueness
in the decompositions, while in two dimensions ishophote twists and ellipticity
change provide additional constraints to break those degeneracies.
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Fig. 1. Galaxy image and its modelled brightness profile

The algorithms we are using here are: Evolution Strategies (ES) [1, 6], Quasi-
Newton (QN) [2, 3] and a hybrid algorithm, merging both of them. The hybrid
algorithm takes advantage of the main features from the two previous algorithms:
the global exploration of ES and the fast convergence of QN when the search is
near the solution.

The rest of the paper is structured as follows: in Section 2 a brief description
of theory of brightness profiling and a description of the problem are presented,
the optimization methods are shown in Section 3, Section 4 includes the general
description of the implementation, results are presented in Section 5 and Section
6 includes conclusions and future work.

2 Brightness Profile

Surface brightness in a galaxy is literally defined as how much light the galaxy
emits[5], and luminosity is defined as the total energy received per unit of area
per unit of time. Then, the surface brightness of an astronomical source is the
ratio of the source’s luminosity F and the solid angle (Ω) subtended by the
source:

B =
F

Ω
(1)

The surface brightness profile in an elliptical galaxy follows the de Vaucoulers
Law r1/4 [4]:

Ib = Ie exp
[
−7.67

[(
r1/4

re

)
− 1

]]
(2)

where r is the distance from the galactic center, re is the mean ratio of the
galaxy brightness (the radius where half of the total brightness lies), and Ie is
the surface brightness for r = re.

Also, the surface brightness profile for a disc galaxy has an exponential dis-
tribution:

Id = I0 exp
(
− r

rd

)
(3)
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where I0 is the central surface brightness and rd is the radial scale length.
Finally, surface brightness distribution in elliptical and spiral galaxies can be

described as the sum of equations (2) and (3), which is an approximation of the
profile using concentric ellipses [5].

Id = Ib + Id (4)

In fact, it is not expected that equations (2) and (3) fit all the profiles mea-
sured in the radial range of the galaxy, because sometimes sky substraction errors
in external regions of galaxy can distort the profile. An example of a galaxy image
and its corresponding generated brightness profile using the previous equations
are shown in Figure 1.

The problem of two-dimensional fitting can be described in brief as follows:
given an image, taken from photometric observations, of a spiral or elliptical
galaxy, an exploration of search space will be done to estimate a set of param-
eters that define the surface brightness profile of the galaxy. Parameters to be
determined by the algorithms are: re, mean ratio of the galaxy brightness; Ie,
surface brightness in r = re; I0, central surface brightness; rd, radial scale length
and two angles i1 and i2, which are the rotation angles about the x and z axes,
with the x axis being horizontal and the z axis pointing towards the observer.

3 Optimization Methods

3.1 Evolution Strategies

Evolution Strategies (ES) [1, 6] is concerned with finding the global minimum of
a function with a large number of variables in a continuous space. The algorithm
starts by choosing k, {q1,q2, · · · ,qk} individuals, each characterized by an object
parameter vector q and a corresponding strategy parameter vector s:

qi = 〈q1,i, q2,i, · · · , qL,i〉 i = 1, · · · , k
si = 〈σ1,i, σ2,i, · · · , σL,i〉 i = 1, · · · , k

In the first generation the elements of the q and s vectors can be chosen
totally at random. Each of the k individuals must be evaluated according to a
fitness function. The fitness function is what we need to minimize (or maximize,
depending on the point of view), and also is called target function.

The next step is to produce a new population applying the genetic operators
cross-over and mutation. For cross-over, two individuals (parents) are chosen at
random, and then we create two new individuals (offspring) by combining the
parameters of the two parents.

Mutation is applied to the individuals resulting from the cross-over operation.
Each element of the new individual is calculated from the old individual using
the simple operation: qj,mut = qj +N(0, σj), where N(0, σj) is a random number
obtained from a normal distribution with zero mean and standard deviation σj ,
which is given by the strategy parameter vector. The process of cross-over and
mutation is repeated until the population converges to a suitable solution.
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3.2 Quasi-Newton

To solve a system of non-linear equations Newton’s method has to estimate the
Jacobian in each iteration, which implies computing partial derivatives; that
results in a very high computational cost. To avoid that complexity, Quasi-
Newton (QN) method [2, 3] substitutes the Jacobian Matrix in Newton’s method
with an approximate matrix that is recalculated in each iteration.

In the beginning, the Jacobian J(x1) is substituted by a matrix A1 in New-
ton’s method:

A1 = J(x0) +
[f(x1) − f(x0) − J(x0)(x1 − x0)] (x1 − x0)t

‖x1 − x0‖2
(5)

Then, this matrix is used to calculate x2:

x2 = x1 − A−1
1 f(x1) (6)

Quasi-Newton works with the two previous equations, substituting the corre-
sponding matrix for each iteration. It is possible to calculate the inverse matrix in
(9) with the following equation, avoiding the inversion process in each iteration:

A−1
i = A−1

i−1 +
(si − A−1

i−1yi)st
iA

−1
i−1

st
iA

−1
i−1yi

(7)

where yi = f(xi) − f(xi−1) and si = xi − xi−1.
The previous equation uses only matrix multiplication, then the total number

of operations in the whole process has a complexity O(n2).

3.3 Hybrid Algorithm

The hybrid algorithm used here is ES+QN. This hybrid algorithm is imple-
mented using ES as a global method to identify promising regions in the search
space, and then, once the region is located, we switch to a QN as local method
to refine the best solution found by ES.

The employed metric to determine where the interesting region lies and when
to change between algorithms is based on progress of the global algorithm, that
is, if the ES algorithm has found a stable region, it is a good sign indicating
that the optimum is near. So when the algorithm ES has not experimented an
improvement of 10% in its best individual during 10 generations, we switch to
the QN algorithm.

4 Implementation

ES were implemented using a population of 10 individuals and was evolved until
the target function reached a value greater than 0.95. QN was implemented using
the function FMINUNC included in the Optimization Toolbox of Matlab, using
all the default parameters.
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Table 1. Results for a set of galaxy images

Galaxy Original Image Best Model Type Algorithm Function Evaluations 1

1+
‖A−B‖2

B+ε

QN N/C N/C
NGC2768 Elliptical ES 5139 0.9824

Hybrid 2970 0.9824

QN N/C N/C
NGC2903 Spiral ES 3348 0.9719

Hybrid N/C N/C

QN N/C N/C
NGC3031 Spiral ES 5737 0.9616

Hybrid 4716 0.9664

QN 159 0.9514
NGC3344 Spiral ES 2430 0.9514

Hybrid 1588 0.9514

QN 302 0.9918
NGC4564 Elliptical ES 3671 0.9917

Hybrid 693 0.9918

In the beginning we have an image of a spiral or elliptical galaxy. By conven-
tion we chose working with 256x256 images in grey scale. In the image we first
determine the galactic center by finding the brightest pixels in a box of 10x10
pixels, in this box we take the central pixel and use its coordinates as the center
of the galaxy in the image.

The process starts by generating randomly a vector (or set of vectors in
the case of ES) of numbers which represents the set of brightness parameters
described in Section 2: [i1,j , i2,j, Ie,j , re,j , I0,j , rd,j ]

The parameter vector is used as input for a program which creates an artificial
image that represents the light distribution in the galaxy, following equations
(2) and (3). The obtained image is also 256x256 pixels in grey scale. Then, the
artificial image is evaluated with the following target function:
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f =
1

1 + ‖A−B‖2

B+ε

(8)

where A is the artificial image, B is the original optical image and ε is a very small
constant to prevent division by 0. The target function represents the similarity
between both images, and its value range is between 0 and 1, with 1 as a perfect
match and 0 as totally different images. At the end, the simulated image that
maximizes this equation is the one that was produced by the set of brightness
parameters we are looking for. We established empirically that with a minimum
value of 0.95 for the target function, the difference between images is almost
imperceptible.

If the target function has not reached the tolerance, then the next step is to
make a modification to the parameter vector. This modification is done according
to the optimization method (ES or QN), following particular features of each
technique, as seen in Section 3. Once the modification is done, the process is
repeated again.

The number of times the process can be repeated is determined in different
ways for each algorithm: for ES we established that the process stops if during
10 generations the target function has not been enhanced in a value greater than
0.3, and Matlab determines the total number of evaluations QN can do.

In the case of the hybrid algorithm, we start with ES and evolved the pop-
ulation until the target function has a value greater than 0.9, or if during 10
generations the target function has not been improved in a value greater than
0.1, then we change to QN, with the best individual reached until that moment
as the starting point for the local algorithm.

5 Results

Table 1 shows the results obtained after applying the algorithms to a set of
galaxy images. The first column indicates the name of the galaxy, the second
and third columns show the original and best model reached (by one of the three
algorithms) respectively, the fourth one the kind of algorithm used, the fifth one
the total number function calls needed by the algorithm to reach convergence
and the last one shows the value for the target function for the maximum found
(in a normalized quantity between 0 and 1, with 1 as a perfect match).

In the fifth column the smallest number of function calls is marked with bold
text, which indicates the algorithm with the best behavior in each example. We
choose the number of function calls as the measure of efficiency because, in most
cases, all the algorithms have very similar accuracies at the end.

From the table we can see that the hybrid algorithm has a very good behavior,
as was expected, it found four of five solutions, and the cost is lower than ES
(and in some cases similar to QN). QN is the algorithm with the most deficient
behavior, since it presents difficulties to reach convergence in three of the five
examples, but, on the other hand, when the algorithm was able to find a solution
it did so with only a few iterations. Also from the figure we see that ES is the
algorithm with the most stable behavior, it was able to find good solutions for all
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the cases, but the cost to reach an acceptable model is very high in comparison
with QN and the hybrid algorithm.

6 Conclusions

In this work we have solved the problem of two-dimensional fitting of bright-
ness profiles for spiral and elliptical galaxies using a hybrid algorithm, based
on a global optimization algorithm and a local optimization traditional algo-
rithm. The hybrid method was compared with the two optimization techniques
separately. The hybrid algorithm achieved the best results considering the to-
tal number of iterations and the number of solutions found. QN was the worst
because it was not able to find solutions in most of the cases, as was expected,
because the problem of fitting profiles is a complex problem with real noise, and
this kind of algorithm are not very well suited to work with this. ES is the most
reliable algorithm to find a solution, but the cost of finding a model can be very
high. Thus, it is possible to conclude that the hybrid algorithm outperforms QN
and ES in most of the examples.
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