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Abstract

In this paper we present a method for autonomous
learning of dextrous manipulation skills with multifin-
gered robot hands. We use heuristics derived from ob-
servations made on human hands to reduce the degrees
of freedom of the task and make learning tractable. Qur
approach consists of learning and storing a few basic
manipulation primitives for a few prototypical objects
and then using an associative memory to obtain the re-
quired parameters for new objects and/or manipulations.
During learning, sensory information from tactile sen-
sors and a position measuring device is used to evaluate
the quality of a candidate manipulation. The parameter
space of the robot is searched using a modified version of
the evolution strateqy, which is robust to the noise nor-
mally present in real-world complex robotic tasks. Given
the difficulty of modeling and simulating accurately the
interactions of multiple fingers and an object, and to
ensure that the learned skills are applicable in the real
world, our system does not rely on simulation; all the
experimentation is performed by a physical robot, in this
case the 16-degree-of-freedom Utah/MIT hand. Ezperi-
mental results show that accurate dextrous manipulation
skills can be learned by the robot in a short period of time.

1 Introduction

Dextrous manipulators have potential applications in
areas such as prosthetics and space and deep sea explo-
ration where a single robot must perform a wide vari-
ety of tasks and thus versatility rather than precision
is the main requirement. Programming these robots to
operate intelligently in the world is a difficult and time-
consuming task, therefore, it would be desirable if the be-
haviors or skills exhibited by the robot could be learned
autonomously by means of the robot’s interaction with
the world.

*This material is based upon work supported by ONR grant
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Due to the large number of degrees of freedom of dex-
trous manipulators, machine learning approaches to this
problem face the well-known “curse of dimensionality”
[2], which states that the number of samples required
to learn a task grows exponentially with the number of
parameters of the task. Another problem is that au-
tonomous experimentation with real robots is expensive
in terms of time and equipment wear. For these rea-
sons, most applications of machine learning to robotics
have dealt with simple robots, and have concentrated on
simple tasks with a few discrete states and actions.

A commonly used approach to make robot learning
feasible despite the high dimensionality of the sensory
and motor spaces is to run the learning algorithms using
simulated environments. However, in situations involv-
ing complex robots and environments, such as in dex-
trous manipulation, it is difficult or impossible to gather
enough knowledge to build a realistic simulation. For
this reason, we believe that for the learned skills to be ap-
plicable by the physical robot in its environment, much
of the learning and experimentation has to be carried
out by the physical robot itself. Given the high cost of
real-world experimentation, for the learning algorithms
to be successfully applied, it is crucial that they converge
within a reasonable number of trials.

Observations made on human hands offer some clues
about how to deal with the problem of the high dimen-
sionality of the parameter space of dextrous manipula-
tors. Arbib et al. [1] introduced the concept of wvirtual
fingers as a model for task representation at higher lev-
els in the human central nervous system. In this model,
a virtual finger is composed of one or more real fingers
working together to solve a problem in a task. The use
of virtual fingers limits the degrees of freedom to those
needed for a task, rather than the number of physical
degrees of freedom the hand, human or robotic, has. Us-
ing the virtual finger abstraction, the dimensionality of
learning a manipulation task is greatly reduced, since
the task of the learning method is to find the required
commands to the virtual fingers, instead of direct com-
mands to physical actuators. Meanwhile, the mappings
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Figure 1: Schematic diagram of the manipulation system

from virtual to real fingers can be learned as a separate
problem or be provided by the human programmer.

In this paper we present an approach for autonomous
learning of dextrous manipulation skills that uses the
concept of virtual fingers to limit the dimensionality of
the search space. The approach consists of first learning
and storing a few basic manipulation primitives for a few
prototypical objects using an evolutionary algorithm and
then using a nearest-neighbor method to compute the
required parameters for new objects and manipulations.
The primitives are learned using a modified version of the
evolution strategy, which allows to deal with the noise
normally present in tasks involving complex interactions
between a robot and its environment. Our system does
not rely on simulation or modeling, instead, all the ex-
perimentation is performed by the physical robot.

2 Learning Dextrous Manipulation

Skills

Figure 1 shows the general structure of our manip-
ulation system, including its learning component. The
system first learns a set of primitives for performing basic
translations and rotations of the object . New manipu-
lations are obtained by combining the primitives using a
nearest-neighbor method. The goal of the learning sys-
tem is to build a table, indexed by goals and objects
that gives as output the virtual finger commands that
can later be converted to the robot commands that will
achieve the goal. It is assumed that the mapping from
virtual to real fingers, which is task and manipulator de-
pendent, is provided by the human programmer.

Normally, a primitive would consist of the changes in
joint angles of the hand that are required to perform
the desired manipulation; however, using the virtual fin-
ger observation, as explained in Section 1, we command
identical changes to corresponding joints of each of the
real fingers that are coupled to form a virtual finger. Es-
sentially, the system learns to manipulate objects using

! These primitives are analogous to Speeter's motion primitives
[15], but in his system the primitives were supplied by the pro-
grammer, while in ours they are learned automatically.

two 3 degree-of-freedom virtual fingers, while the pro-
grammer provides the mappings from virtual finger pa-
rameters to the joint angles of the particular robot used.
Besides efficiency, this has the advantage of making the
learning mechanism manipulator-independent.

The perceptual goal given as input has the form
g=I[z,y,2,a,8,7,p1,-..,Pn), where z,y, z encode the
position of the object in 3-dimensional Cartesian space,
a, 3,7 are the Euler angles azimuth, elevation and roll
defining the object’s orientation with respect to a hand-
centered coordinate system, and pq, ..., p, are the read-
ings in the tactile sensors located at each of the n finger-
tips.

Let g be a perceptual goal and @ be a vector encoding
virtual finger commands. Let p(#) be the perception
vector obtained from reading the sensors after executing
the robot command corresponding to ®. A metric f,
which monotonically decreases with the quality of the
manipulation encoded by @, is given by

m
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where m is the dimensionality of the sensory space,
wi, ..., Wy, are the relative weights of the errors in the
different elements of the perception vector and (¥i €
{1,...,m}), w; > 0.

Given the uncertainty present in sensors and effectors,
and the fact that f may have several local minima, it is
unlikely that a standard Newton or gradient-based min-
imization method would suffice for this problem. There-
fore we have to resort to optimization techniques that
are better at dealing with local minima and handling an
apparently non-deterministic environment.

The optimization method we use is a modification of
the well-known evolution strategy [14], an iterative prob-
abilistic optimization algorithm loosely based on biolog-
ical evolution. In its simplest form, the optimization
starts with a parent, a real-valued vector which encodes
a candidate solution to the problem at hand, then the
following two steps are repeated until a termination con-
dition is attained: 1) Create a descendant, by randomly
changing the parent (mutation). 2) Select the better of
parent and descendant as the parent for the next iter-
ation (selection). The process terminates when a pre-
specified number of iterations is executed or a goal value
in the objective function is attained. According to the
biological observation that offspring are similar to their
parents and that small changes occur more often that
large ones, mutation is realized by adding to the par-
ent a normally distributed random vector with expected
value zero. A major feature of this family of algorithms
is the dynamic updating of the standard deviation of the
distribution used to obtain the descendant in response
to the characteristics of the region of the objective func-
tion that is being explored. If successful mutations oc-



cur rarely, the search is likely to be near a minimum
and the size of the neighborhood being searched should
be decreased. If successful mutations occur too often, it
means that convergence could be sped-up by increasing
the step size.

2.1 The Learning Algorithm

The algorithm we use for learning manipulation prim-
itives uses an extrapolation operator as a heuristic to
guide the search in the direction of decreasing value of
the objective function in addition to the standard mu-
tation operator used in the evolution strategy. The idea
behind the extrapolation operator is to use the values of
the objective function in the previous iterations to esti-
mate the direction of the gradient of the function and
obtain a new descendant by extrapolating in that di-
rection. The extrapolation step length is dynamically
adapted in response to the local characteristics of the
function being explored. Similarly to the mutation case,
we increase the step length when the probability of a suc-
cessful extrapolation is above a threshold and decrease
it otherwise.

Formally the algorithm we use for learning the virtual
fingers commands that will execute the desired manipu-
lation can be described as follows. Let f be the objective
function as defined earlier, let M C R**! be the set of
valid virtual finger commands, where & is the number
of virtual fingers and [ is the number of degrees of free-
dom of each virtual finger. Let p(x) € R™ , & € M be
the perception obtained after executing the virtual fin-
ger command @, where m is the dimensionality of the
sensor space. The overall goal of the algorithm is to find
a vector ®* € M such that

(Vz € M) f(g,p(z*)) < f(g,p(z))

The optimization procedure starts with a parent u® =
(2°,0° A% 2°), where ° € M is a candidate virtual fin-
ger command, ¢° > 0 is the standard deviation, A° > 0
is the extrapolation step length and z° € R**! is the
estimated gradient vector. In the absence of prior infor-
mation, these values can be initialized randomly.

In each iteration, a candidate virtual finger command
x! is obtained by mutating the parent

=z +r(0,0)

m

where 7(0, o) denotes a random vector with each el-
ement obtained from a normal distribution with zero
mean and ¢’ standard deviation.

Another candidate virtual finger command wle is then
obtained by adding to the parent a vector with magni-
tude A’ in the estimated direction of the gradient.
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Perceptual Goals
Joint Angles | g, g vt gm
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Table 1: Table to be filled-up by the learning algorithm

After executing the commands encoded by ', win
and x;, we obtain the perceptions p(x'), p(=)) and
p(x!) and the objective function values f(g,p(x*)),
flg,p(z;,)) and f(g,p(=)).

The individual u't! = (@iT1e'+L A+ 2i+1) {0 be
used as the parent in the next generation is given by:

i+1

x = argmin f(g,p(x)), x€ { x', win, wé}

. o L
i+1 _ o' xcq 1fpﬁn>.g
o0*/cqy otherwise

ANokeg ifpl >1
A /cq  otherwise
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where 1 > a > 0. p!, is the estimated probability of
having a successful mutation, that is, the ratio of times
the fitness of the individual obtained by mutation is bet-
ter to that of the parent to the number of iterations?,
p’ is the estimated probability of having a successful ex-
trapolation, and ¢4 > 1 is a constant.

The choice of % as a constant to modify ¢ and A
is based on Rechenberg’s 1/5 success rule [12] and was
proven to be optimal for a restricted kind of object func-
tions and has been observed to work well in practice.

The learning algorithm is used to fill-up a table con-
taining virtual finger commands and indexed by object
and perceptual goal as shown in table 1. In the table,
Ji is a vector encoding the joint angles of the hand after
grasping the ith object in the prototype set. For each
object the system stores the configuration of the hand j;
after the grasping operation and then it learns the virtual
finger commands x; ,, .. .,®; m required to attain percep-
tual goals g,, ...,gm for that object using the algorithm
described earlier.

?In the implementation we use a fixed length window of past
results to estimate this probability
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Figure 2: The experimental setup

In the look-up phase we use a nearest-neighbors ap-
proach to obtain the appropriate virtual finger com-
mands for a given object and goal. Let jcqs be the
configuration of the hand, obtained from the hand’s joint
angle sensors and let g* be the perceptual goal. Let j,
and j,, p # q be the two closest values to Jmeas in the
row index column. Let g, and g, r # s be the two clos-
est values to g* in the column index row. The command
a«* to attain the goal for the given object is given by:

( |.72 - jmeasl .
|jp - jmeasl + |.7q - jmeasl

@= 3 D,

ie{p,qt je{r,s}
lg; — g7
|gr - g*l + |gs - g*l

m{p,q}—ir{hs}—J')

3 Experimental Results

The algorithms described in the previous section were
implemented in our vision and robotics lab using the
Utah/MIT dextrous hand [6]. We used an Ascension
flock of birds ™ magnetic sensor attached to the object
being manipulated for position and orientation sensing.
For tactile sensing we used interlink ™ pressure-sensitive
resistors, which were taped to the object. The experi-
mental setup is shown in figure 2.

In the four-fingered Utah/MIT hand the thumb is per-
manently opposed to the index, middle and ring fingers,
therefore it is natural to partition the real fingers into
two virtual fingers, one composed by the thumb and
the other by the remaining fingers. Each finger of the
Utah/MIT hand is itself redundant, having four joints,
three of which are coplanar. To solve this redundancy we
use another observation made on human hands, namely,
that the angles of the last two joints of each finger are
roughly equal 3. This form of redundancy resolution and

3This observation has been used in other systems (e. g. [10])
for computing the inverse kinematics of the Utah/MIT hand.
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Figure 4: Translation along the y axis

the use of virtual fingers, reduce the dimensionality of
the parameter space from 16 to 6 and make autonomous
learning in a reasonably short period of time feasible.

The system learned several basic manipulations con-
sisting of translations along the three main axes and ro-
tations about 2 of the main axes and several combina-
tions of them. On average, each primitive was learned
in about 50 generations using the algorithm described
in Section 2. The algorithm was run until the preci-
sion exceeded a predefined threshold. Each trial move
took about one second. With three trials moves per gen-
eration and including other delays, each primitive was
learned in a little over three minutes on average. They
main bottleneck we faced was the hysteresis in the in-
terlink tactile sensors, which forced us to wait for a few
tens of a second between moves to allow the sensors to
return to their normal state. This alone accounted for
about 40% of the running time.

Figures 3 shows the hand performing a translation
along the z axis by sequentially moving to the previously
learned goals [z,y, z] = [-25,0,0], [z,y,2] = [0,0, 0] and
[z,y, 2] = [25,0,0], where displacements are given in mil-
limeters. Similarly, figure 4 shows a translation along

Figure 5: Translation along the z axis
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the y axis using the sequence [0, —25, 0], [0, 0, 0], [0, 25, 0].
Figure 5 shows the sequence [0, 0, 10],[0,0,0],[0, 0, —10]
to perform a movement along the z axis. Intermediate
positions (not shown) where obtained using the nearest
neighbors approach, as explained in Section 2. These
movements were learned with an object that is similar,
but not identical, to the one used during execution (see
figure 2.) Tt can be seen that the quality of the manipu-
lation is quite good, showing also that the learned skills
can be transferred between similar objects. Although
few quantitative results for other systems have been re-
ported, the quality of the manipulations seems compara-
ble to the one obtained by other systems where the ma-
nipulations are programmed by hand, such as [15, 9, 7, 5].

10 20 40 50 60

30
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Figure 6: Evaluation of the quality of manipulation as a
function of generation for perceptual goal [25,0,0,0,0,0],
corresponding to a 25 mm translation along the z axis.
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Figure 7: Evaluation of the quality of manipula-
tion as a function of generation for perceptual goal

[0,-25,0,0,0,0].

Figure 6 shows the value of the manipulation qual-
ity function f for a translation of 25 mm along the
z axis as a function of the generation. The percep-
tual goal also included maintaining a constant force
applied by each finger, equal to the forces measured
at the start of the manipulation. After approximately
25 generations a good level of performance is attained.
Near the goal, further exploration yields slower improve-
ment, due in part to the fact that the noise makes the
choices between two very similar parameter sets almost
random. After 63 generations the prespecified accu-
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Figure 8: Evaluation of the quality of manipula-
tion as a function of generation for perceptual goal

[0,0,-10,0,0,0].

Goal Position Error | Orientation Error
(25,0, 0,0, 0, 0] 1.21 1.56
[-25, 0, 0, 0, 0, 0] 4.20 3.44
[0, 25, 0,0, 0, 0] 2.08 6.64
[0,-25,0, 0,0, 0] 1.60 0.26
[0, 0, 10, 0, 0, 0] 1.79 2.99
[0, 0,-10, 0, 0, 0] 1.93 7.51

Table 2: Goal positions and errors for a few selected
learned manipulations.

racy was obtained and the program stopped. In this
particular run the perception at that point was p =
[24.940,0.110,—1.208,0.2406, —1.5355, —0.0688], yield-
ing a final error of 1.21 mm in position and 1.56 de-
grees in orientation, which is remarkably accurate. Sim-
ilarly, figure 7 plots f for a translation of -25 mm
along the y axis. In this case the convergence was a
little quicker, exceeding the threshold after 48 gener-
ations. The final error was slightly larger in position
and smaller in orientation, with a a final perception of p
= [-0.99,-26.28,0.11,0.243, —0.091, 0.066], an error of
1.6 mm in position and 0.26 degrees in orientation. Fig-
ure 8 shows the learning plot for p = [0,0,—10,0,0,0];
the overall behavior of the optimization is similar to the
previous two cases. Table 2 shows goal positions, actual
positions after learning and errors for a few selected ma-
nipulations. In general the results are consistent with
the ones described above.

Figure 9 illustrates how the system can generalize to
new objects. The figure shows the hand manipulating an
object that was not in the original prototype set. The ap-
propriate virtual finger commands were computed using
the nearest neighbors method, as explained in section 2.
It can be seen that the quality of the manipulation is
good, even though the system did not receive any train-
ing for that particular type of object.




Figure 9: Generalization to a new object

4 Related Work

Some work has been done in robotic manipulation us-
ing machine learning techniques. In general, these ap-
proaches have dealt with simple tasks such as grasp-
ing with parallel jaw grippers, and simple manipulation
strategies using robot arms.

Dunn and Segen [4] presented a robotic system that
learns how to grasp objects. In their system, when an ob-
ject is presented for the first time the robot experiments
with it, seeking a way to grasp it by trial and error using
visual information and input from the robot gripper. A
discovered grasp is saved along with the object’s shape.
The system generalizes to different positions and orien-
tations but not to sizes.

Kamon et al. [8] presented a robotic system that
learned to grasp objects with a parallel-jaw gripper us-
ing visual information. Their system learns two separate
subproblems: to choose grasping points, and to predict
the quality of a given grasp. It incrementally improves
its performance over the course of a training session. The
system used very little information about the target ob-
ject; in particular, no attempt was made to recover the
object’s shape.

Salganicoff et al. [13] used a modified version of the
ID-3 inductive learning algorithm [11] in a robotic system
that learned to grasp objects using visual information.
Their system learned likely to succeed grasping strategies
in the form of the azimuth and elevation approach angles
of the gripper to the object given a superellipsoid fit of

the object as input.

Christiansen, Mason and Mitchell [3] described a sys-
tem that learned models of manipulation actions from
observations of the effects of such actions. In their
experimental implementation, a robot learned how to
re-position and re-orient an object located on a tray,
held by the robot from underneath, by a sequence of
tray tilts. This work introduced the term apparent
non-determinism to refer to the fact that executing the
same action twice from the same starting state might
give different results. They coped with apparent non-
determinism by assuming probabilistic rather than deter-
ministic transitions between states. This system uses a
discretization of the perception and action spaces, which
are both one-dimensional and scalability to more com-
plex tasks may be a difficult.

The approaches to manipulation using machine learn-
ing described in this section deal with low-dimensional
parameter spaces, and thus might not be suitable for use
with a redundant, high-degree-of-freedom manipulator.
Another potential inconvenience is the discretization of
the action and state spaces.

5 Conclusions and Future Work

We have presented a method for machine learning of
dextrous manipulation skills. We consider the following
to be the most salient features of this work.

e Heuristics derived form observations made on hu-
man hands were used to reduce the degrees of free-
dom of dextrous manipulation with robotic hands.
This significantly simplified the task and made au-
tonomous learning feasible.

e Our system does not rely on simulation. Instead,
all the experimentation is done by a physical robot.
This is valuable in situations such as dextrous ma-
nipulation, where building a realistic and accurate
simulator is extremely difficult.

e We used a modified version of the evolution strat-
egy to learn manipulation primitives. This learning
algorithm successfully dealt with the noise in sen-
sors and effectors and allowed the primitives to be
learned in a period of a few minutes.

o We used an associative memory to select the appro-
priate set of primitives to use from the ones stored
during the learning phase. The learned primitives
could be combined to form general manipulations.

Present and future work includes application of the
system to solve manipulation tasks such as assembly,
learning primitives that require repositioning the fingers
on the surface of the object and using a more sophisti-
cated version of the evolution strategy to learn the basic
primitives in even shorter periods of time.
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