
OPTIMAL SOLUTION OF INTERVAL
LINEAR SYSTEMS IS INTRACTABLE (NP-HARD)

V. Kreinovich1, A. V. Lakeev2, S. I. Noskov2
1Department of Computer Science, University of Texas at El Paso, El Paso, TX 79968

email vladik@cs.ep.utexas.edu
2Irkutsk Computing Center, Russian Academy of Science, Siberian Division

Lermontov Str. 134, Irkutsk 664033, Russia

Abstract. All known methods for finding optimal solutions to interval linear systems
demand (in the worst case) exponential time. In this paper, we show that this problem is
NP-hard, and thus (unless NP=P) faster algorithms are impossible.

1. INTRODUCTION

In many real-life problems, it is necessary to solve linear systems. In many
real-life problems, the desired values x1, ..., xn must be determined from their known linear
combinations Ai1x1 + ... + Ainxn. In other words, we must solve the system of linear
equations Ai1x1 + ...+ Ainxn = bi, 1 ≤ i ≤ N with known bi and Aij .

Interval systems. In the ideal case, when we know bi and Aij precisely, it is sufficient
to know N = n (independent) linear combinations. In many real-life problems, however,
we know only the intervals for the values bi and Aij . In this case, we will not be able to
find precise values of all xi, only intervals of their possible values. In this case, additional
linear combinations may increase the precision (i.e., diminish the interval). In view of that,
in some real-life cases, N is taken to be greater than n.

Let’s give precise definitions (see, e.g., [12]):

Definition 1. Assume that p ≥ 1 is an integer. By an interval p−vector b, we mean a
sequence of p intervals b1,b2, ...,bp. We say that a p−vector b = (b1, ..., bp) belongs to b
(b ∈ b) if bi ∈ bi for all i. Similarly, for any integers p ≥ 1 and q ≥ 1, by an interval

p× q−matrix A, we mean a p× q matrix whose elements are intervals Aij , 1 ≤ i ≤ p, 1 ≤
j ≤ q. We say that a p × q matrix A with components Aij belongs to A (A ∈ A) if
Aij ∈ Aij for all i and j.

Definition 2. Assume that integers n > 0 and N ≥ n are given. By an interval linear

system we mean a pair (A,b), where b is an interval N−vector, and A is an interval
N × n−matrix. This pair is also denoted as Ax = b. We say that an n−vector x =
(x1, ..., xn) is a possible solution of a system Ax = b if Ax = b for some matrix A ∈ A
and some vector b ∈ b. The set of all possible solutions of an interval linear system will
be denoted by Σ∃∃(A,b). In other words,

Σ∃∃(A,b) = {x ∈ Rn |(∃A ∈ A)(∃b ∈ b)(Ax = b)}.

Comment. This denotation was introduced by S. P. Shary (private communication) to
distinguish this notion from other notions of a solutions set (see, e.g., [4]).

Definition 3. We say that an interval linear system is consistent if it has a possible
solution, and that it is non-singular if its set of possible solutions is bounded.
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Comment. For example, a system is non-singular if N = n, and all matrices A ∈ A are
non-singular [12]. Another case is when we have a non-singular system, and add additional
equations to it.

Definition 4. An optimal (exact) solution of an interval linear system Ax = b is a set of
n intervals [x−

j , x
+

j ], where 1 ≤ j ≤ n,

x−

j = min{xj | x ∈ Σ∃∃(A,b)} and x+

j = max{xj | x ∈ Σ∃∃(A,b)}.

There exist several algorithms that find an optimal solution to a consistent non-
singular interval linear system (see [8], [1], [7], [10], [6], [11], [12], and references therein).
These algorithms handle the case of the square matrix, when N = n. The main problem
with these algorithms is as follows: If we know A and b precisely, then one can compute
the components x1, ..., xn in polynomial time, namely, in time that grows as ≤ Cn3. Even
for large n, this is feasible. However, for all known interval algorithms, the running time
increases exponentially with n (i.e., as an) even for N = n, and is, therefore, infeasible for
large n.

In this paper, we prove that the problem of finding an optimal solution to a consistent
non-singular interval linear system is in the general case intractable (or, using the precise
mathematical notion from complexity theory [3], NP-hard).

Therefore, we cannot expect polynomial-time algorithms for interval linear systems
(unless, of course, someone finds a way to solve all intractable problems).

2. MAIN RESULT

Problem. Given a consistent non-singular interval linear system, find its optimal solution.

What is NP-hard: a brief informal explanation. We want to prove that this problem is
NP-hard. This notion (see, e.g., [3]) means that if there exists an algorithm solving inter-
val systems in polynomial time (i.e., whose running time does not exceed some polynomial
of the input length), then the polynomial-time algorithm would exist for practically all
discrete problems such as propositional satisfiability problem, discrete optimization prob-
lems, etc, – and it is a common belief that for at least some of these discrete problems no
polynomial-time algorithm is possible (this belief is formally described as P 6=NP). So, the
fact that the problem is NP-hard means that no matter what algorithm we use, there will
always be some cases for which the running time grows faster than any polynomial, and
therefore, for these cases the problem is intractable. In other words: no practical algorithm
is possible that finds the optimal solution to any non-singular interval linear system.

THEOREM. The problem of computing an optimal solution to a consistent non-singular

interval linear system is NP-hard.

Comment. A similar results was announced in [5]. It has also been recently proved [9] that
checking whether a square matrix is non-singular is NP-hard.

Another case when computing an optimal interval estimate is NP-hard is given in [2]:
namely, it is proved there that computing the range P (x1, ...,xn) of a given polynomial
P (x1, ..., xn) of several variables x1, ..., xn from given intervals of values x1, ..., xn is NP-
hard.
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3. PROOF

To prove that our problem is NP-hard, we will prove that if it were possible to solve
it in polynomial time, then it would be possible to solve in polynomial time a problem
that is already known to be NP-hard: the so-called satisfiability problem for 3-CNF (see,
e.g., [3]). This problem consists of the following: suppose that an integer v is fixed, and
a formula F of the type F1&F2&...&Fk is given, where each of the expressions Fi has the
form a∨b or a∨b∨c, and a, b, c are either the variables z1, ..., zv, or their negations z̃1, ..., z̃v
(these a, b, c, ... are called literals). If we assign arbitrary logical values (“true” or false”)
to v variables z1, ..., zv, then, applying the standard logical rules, we get the truth value of
F . We say that a formula F is satisfiable if there exist truth values z1, ..., zv for which the
truth value of the expression F is “true”. The problem is, given F , to check whether it is
satisfiable.

The reduction will be as follows. Let us start with a 3-CNF propositional formula F
of the type F1&F2&...&Fk with v Boolean variables z1, ..., zv (i.e., variables that can take
only two values: “true” and “false”). Let us build an interval linear system as follows. This
system will have n = 2v + 2 variables x1, ..., xv, xv+1, ..., x2v, x2v+1, xn, and the following
equations:
1) v + 1 equations [−2, 2]xi = [1, 2], 1 ≤ i ≤ v + 1;
2) v + 1 equations [−1,−1]xi + [1, 1]xv+i+1 = [0.5, 0.5], 1 ≤ i ≤ v + 1;
3) v + 1 equations [1, 1]xv+i+1 = [0, 1], 1 ≤ i ≤ v + 1;
4) k equations that correspond to F1, ..., Fk: namely, if Fj = a∨ b∨ c, then the equation

t(a) + t(b) + t(c) + [0, 1]xn = [1, 3], where t(zi) = xv+1+i and t(z̃i) = 1− xv+1+i, and
if F = a ∨ b, then the equation t(a) + t(b) + [0, 1]xn = [1, 2].

As a result, we get an interval linear system with n = 2v + 2 variables and N =
3(v+1)+k equations. The time that it took us to design this system is evidently bounded
by a polynomial of v.

Example. Let us take F = (z1 ∨ z2)&(z1 ∨ z̃2). Here, k = v = 2, so we have the
following linear system:

[−2, 2]x1 = [1, 2]
[−2, 2]x2 = [1, 2]
[−2, 2]x3 = [1, 2]

[−1,−1]x1 + [1, 1]x4 = [0.5, 0.5]
[−1,−1]x2 + [1, 1]x5 = [0.5, 0.5]
[−1,−1]x3 + [1, 1]x6 = [0.5, 0.5]

[1, 1]x4 = [0, 1]
[1, 1]x5 = [0, 1]
[1, 1]x6 = [0, 1]

[1, 1]x4 + [1, 1]x5 + [0, 1]x6 = [1, 2]
x4 + (1− x5) + [0, 1]x6 = [1, 2], or [1, 1]x4 + [−1,−1]x5 + [0, 1]x6 = [0, 1].

End of example.

We will now prove the following three statements:
i) for every formula F this system is consistent and non-singular;
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ii) if a formula F is satisfiable, then [x−

n , x
+
n ] = [0, 1];

iii) if a formula F is not satisfiable, then [x−

n , x
+
n ] = [1, 1].

If we prove that, then we will be able to prove our theorem. Indeed, suppose that there
exists an algorithm that finds an optimal solution of any consistent non-singular interval
linear system in polynomial time (i.e., in time that does not exceed some polynomial of n).
Let us show that this algorithm will enable us to check satisfiability in polynomial time.
Indeed, for any 3-CNF formula F , we form an interval linear system (as above; it takes a
polynomial time) and apply the hypothetic algorithm to compute its optimal solution. If
x−

n = 0, then F is satisfiable; if x−

n = 1, then F is not satisfiable. The running time of this
algorithm is polynomial in N = 3(v + 1) + k and thus polynomial in v.

So, to complete the proof of our theorem, it is sufficient to prove the above three
statements i)− iii).

1. The above-described system is consistent.

To prove that, let us show that the following x is a possible solution: xi = −0.5,
1 ≤ i ≤ v, xv+1 = 0.5, xv+1+i = 0, 1 ≤ i ≤ v, and xn = 1. Indeed,

1) The equations [−2, 2]xi = [1, 2], 1 ≤ i ≤ v + 1, are satisfied because (−2)xi = 1 for
i ≤ v (where −2 ∈ [−2, 2] and 1 ∈ [1, 2]), and 2xv+1 = 1.

2) The equations [−1,−1]xi+[1, 1]xv+i+1 = [0.5, 0.5] are satisfied for all 1 ≤ i ≤ v+1.

3) The equations [1, 1]xv+i+1 = [0, 1], 1 ≤ i ≤ v + 1, are evidently satisfied;

4) Each equation t(a) + t(b) + t(c) + [0, 1]xn = [1, 3] is satisfied for the following
reason: each of the values t(a), t(b), and t(c), is equal either to 0, or to 1. Therefore,
t(a)+ t(b)+ t(c) is equal to either 0, or 1, or 2, or 3. If this sum is equal to 1, 2, or 3, then
t(a)+t(b)+t(c)+0·xn ∈ [1, 3]. If t(a)+t(b)+t(c) = 0, then t(a)+t(b)+t(c)+1·xn = 1 ∈ [1, 3].

Similarly, the equations t(a) + t(b) + [0, 1]xn = [1, 2] are satisfied. So, the system is
consistent.

2. Let us now prove that this system is non-singular.

Indeed, according to equations 3), xv+1+i ∈ [0, 1], and from this and equations 2), we
conclude that xi = xv+1+i − 0.5 ∈ [−0.5, 0.5] for i ≤ v + 1. Therefore, for each of the
variables xi, its area of possible values is bounded. So, the system is non-singular.

3. Before we start proving two other properties, let us first prove that for any possible
solution of this system, xv+1+i ∈ {0, 1} for i ≤ v + 1.

Indeed, according to equations 1), [−2, 2]xi = [1, 2]. Therefore, if xi is a possible
solution, there exists values r and s such that rxi = s, r ∈ [−2, 2], and s ∈ [1, 2].

Since s = rxi ∈ [1, 2], we have rxi 6= 0, hence xi 6= 0. If xi > 0, then from rxi > 0,
we conclude that r > 0, so 0 < r ≤ 2. From s ≥ 1 and 0 < r ≤ 2, we conclude that
x = s/r ≥ 1/2. Likewise, if xi < 0, we can conclude that xi ≤ −0.5.
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Therefore, xi ∈ (−∞,−0.5] ∪ [0.5,∞) for i ≤ v + 1.

According to equations 2), xv+1+i = xi + 0.5. Therefore, xv+1+i ∈ (−∞, 0] ∪ [1,∞),
i.e., either xv+1+i ≤ 0, or xv+1+i ≥ 1.

According to equations 3), xv+1+i ∈ [0, 1]. So, values < 0 and > 1 are not possible.
Therefore, either xv+1+i = 0, or xv+1+i = 1.

4. In particular, 3. means that for possible solution x, xn can take only the values 0
and 1. We have already proved (in 1.) that 1 is a possible value of xn. Let us now prove
that 0 is a possible value of xn if and only if F is satisfiable. This will prove ii) and iii),
and thus complete the proof of the theorem.

4.1. First, assume that F is satisfiable, and zi are corresponding truth values. Let us
show that in this case the following vector x is a possible solution: xn = 0, xv+1 = −0.5;
for 1 ≤ i ≤ v, xv+1+i = 1 iff zi =“true”, and xi = xv+1+i − 0.5.

1) [−2, 2]xi = [1, 2] is satisfied, because either xi = −0.5 (then (−2)xi = 1), or
xi = 0.5, then 2xi = 1.

2)[−1,−1]xi + [1, 1]xv+i+1 = [0.5, 0.5] is satisfied.

3) Equations [1, 1]xv+i+1 = [0, 1] are trivially true.

4) Each of the values t(a), t(b), t(c) equals 0 or 1. Therefore, the sum t(a) + t(b) +
t(c) + [0, 1]xn = t(a) + t(b) + t(c) is equal to one of the 4 numbers 0, 1, 2, and 3. Since
the values z1, z2, ..., zk satisfy F , the truth value of F is “true”. Therefore, each of the
subformulas Fj is true, which means that for each j, at least one of the expressions a,
b, or c, is true. If a is true, then, according to our assignment, t(a) = 1. Therefore,
[0, 1]xn + t(a) + t(b) + t(c) is at least 1. Hence, t(a) + t(b) + t(c) + [0, 1]xn ∈ [1, 3]. So,
these equations are also satisfied.

4.2. Now, assume that xi is a possible solution, and xn = 0. Let us show that the
formula F is satisfiable. We will show, that the following set of Boolean value makes it
true: zi =“true” iff xv+1+i = 1.

Indeed, according to 3., for every i ≤ v, xv+1+i is equal either to 0, or to 1. Hence, for
every a, either t(a) = 0 or t(a) = 1, and t(a) = 1 iff a is true. Since xn = 0, for every Fj ,
the corresponding sum is equal to t(a) + t(b) + t(c) + [0, 1]xn = t(a) + t(b) + t(c). Because
of the equation 4), this sum is ≥ 1. This means that at least one of its terms t(a) is equal
to 1. This, in its turn, means that at least one of the literals a is true. Therefore, the
formula Fj = a ∨ b ∨ c is true for all j. Therefore, F = F1&...&Fj&...&Fk is true. Q.E.D.

Acknowledgments. This work was sponsored by NSF grant No. CDA-9015006,
NASA Research Grant No. 9-482, and a Grant No. PF90–018 from the General Services
Administration (GSA), administered by the Materials Research Institute. The authors are
thankful to S. P. Shary, Jiri Rohn for interesting reprints and stimulating discussions, and
also to the anonymous referee for valuable comments.

5



REFERENCES
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