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Abstract

In standard arithmetic, if we, e.g., accidentally add a wrong number
y to the preliminary result x, we can undo this operation by subtracting
y from the result x+ y. In this paper, we prove the following two results:

• First, a similar possibility to invert (undo) addition holds for fuzzy
numbers (although in case of fuzzy numbers, we cannot simply undo
addition by subtracting y from the sum).

• Second, if we add a single fuzzy set that is not a fuzzy number, we
lose invertibility.

Thus, invertibility requirement leads to a new characterization of the class
of all fuzzy numbers.
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1 Formulation of the problem

1.1 Why data processing?

In many real-life situations, we are interested in the value of some quantity Z
that is impossible (or difficult) to measure or estimate directly. For example, it
is difficult to estimate or directly measure the amount of oil in a given field. To
get the desired estimate, we find some quantities X1, . . . , Xn that are related to
Z in a known way. Based on this known relation, we develop an algorithm f that
transforms the values xi of the quantities Xi into an estimate z = f(x1, . . . , xn)
for Z.

Then, we will be able to estimate Z as follows:

• First, we measure (or otherwise estimate) the values x1 . . . , xn of the quan-
tities X1, . . . , Xn.

• Second, starting with the estimates x1, . . . , xn, we apply (step-by-step)
the algorithm f and finally, get the desired estimate z = f(x1, . . . , xn).

The values x1, . . . , xn are called input data, and the computational process of
computing f(x1, . . . , xn) is called data processing.

1.2 It is sometimes necessary to undo (invert) the results
of arithmetic operations

• Computers are not 100% perfect. It may so happen that one of the oper-
ations was applied to a wrong number.

• Our algorithms are not perfect. We may have done a wrong step.

In both cases, it is desirable to be able to “undo” (“invert”) what was done
wrong and continue computations without having to start everything anew.

1.3 Arithmetic operations with real numbers are invert-
ible

It is always easy to “undo” an (elementary) arithmetic operation with real
numbers: e.g., if have we accidentally added to a value x a wrong number y,
we can always reconstruct the original value x by simply subtracting y from the
result of the addition: (x+ y)− y = x.

Similarly, we can undo the results of practically all elementary arithmetic op-
erations. The only case when it is impossible to undo the result of an arithmetic
operation is when we have multiplied a number x by y = 0.

We can express this possibility to “invert” the result of an arithmetic oper-
ation by saying that the corresponding computer operation with real numbers
(in particular, addition x → x+ y) is invertible.
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1.4 Case of expert (fuzzy) knowledge

In many real life situations, we cannot directly measure the values x1, . . . , xn

of the quantities X1, . . . , Xn. Instead, we only have the expert’s estimates of
these values. Instead of operations with real numbers, we thus have to perform
operations with these estimates.

1.5 The main question

A natural question is: are the arithmetic operations with expert estimates in-
vertible? And, if the resulting operations are not always invertible, under what
conditions can we guarantee their invertibility?

In this paper, we will answer these two questions. The results of these paper
partially appeared in [1].

2 Fuzzy sets, fuzzy numbers, and operations
with fuzzy sets and numbers

2.1 Fuzzy sets as a natural description of expert knowl-
edge

Expert estimates are usually formulated in terms of words of natural language
(e.g., “x is approximately equal to 1”). In order to apply computer operations
to such estimates, we must first describe them in computer-understandable (nu-
merical) terms.

One of the most natural ways to describe the expert’s uncertain (“fuzzy”)
knowledge about a quantity X is to describe, for each real number x, our degree
of belief that x is a possible value of the quantity X. This degree of belief is
usually denoted by µX(x), and the corresponding description is called a fuzzy
set (see, e.g., [4, 11]).

If we know the fuzzy sets that correspond to different inputs X1, . . . , Xn,
then we will be able, using the well-known extension principle [4, 11], to describe
the fuzzy set Y , i.e., in other words, to describe, for each real number y, how
possible it is that this number is the actual value of Y . This description is very
informative, but in many real-life situations (like in the oil example) we are not
so much interested in this “fine structure” of our beliefs as in making a simple
decision of what values of Y are possible and what values are not.

To make such a “binary” (“yes-no”) decision, we must select some threshold
degree of belief α ∈ (0, 1] and separate all possible real numbers y into two
groups:

• For some real numbers y, our degree of belief that y is a possible value of
Y exceeds (or is equal to) the threshold α (µY (y) ≥ α). We assume that
such values y are possible for Y .
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• For some other values y, our degree of belief that y is a possible value of Y
is smaller than the threshold α (µY (y) < α). We assume that such values
y are not possible for Y .

The set of all y selected as possible is called the α−cut of the corresponding
fuzzy set and denoted by αY .

This necessity to make a decision leads to the following natural alternative
representation of a fuzzy set: to describe a fuzzy set X, for every α ∈ (0, 1], we
describe the set αX of all the values that will be assumed possible if take α as
a threshold. This family of sets { αX} is monotonic (αX ⊆ βX if α ≥ β), and
completely describes the original fuzzy set.

2.2 Operations on fuzzy sets

The above representation of a fuzzy set as a family of its α−cuts is a natural
background for defining operations on fuzzy sets, in particular, operations that
correspond to standard arithmetic operations.

In order to define the result X ◦Y of applying an operation ◦ (e.g., addition,
subtraction, multiplication, etc.) to fuzzy sets X and Y , let us fix a threshold α
and find out what values of X ◦Y are possible for this particular threshold. For
this threshold, only values from αX are possible values of X, and only values
from αY are possible values of Y . By applying the operation ◦ to all possible
pairs x ∈ αX and y ∈ αY , we get the set of all possible values of X ◦ Y . In
other words, the α−cut α(X ◦Y ) of the desired fuzzy set X ◦Y has the following
form ([4], Section 4.4):

α(X ◦ Y ) = {x ◦ y |x ∈ αX, y ∈ αY }. (1)

In particular, for addition (◦ = +), we have

α(X + Y ) = {x+ y |x ∈ αX, y ∈ αY }. (2)

Comment. Under certain reasonable conditions, this definition is equivalent to
the more standard one, that stems from the extension principle [10, 2, 3].

2.3 Fuzzy sets used in data processing

In different situations, different fuzzy sets are possible; for example, we some-
times only know that the value of a certain quantity X is “large”. The greater
the value x, the greater our degree of belief that this x is large, so the corre-
sponding α−cuts are semi-infinite intervals.

Such knowledge is possible; however, for data processing, such vague infor-
mation is practically useless. Since in this paper, we are only interested in data
processing applications, we will therefore restrict ourselves only to the fuzzy sets
in which for every α, the α−cut is bounded.
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There is one more property that is natural to assume: if the values
x(1), x(2), . . . , x(k), . . . are all possible, and the sequence x(k) converges to a cer-
tain number x, then no matter how accurately we compute x, we will always
find a number x(k) that is indistinguishable from x and possible. Therefore, it
is natural to assume that this limit value x is also possible. In other words, it
is natural to assume that every α−cut contains all its limit points, i.e., that it
is a closed set.

Combining these two conditions, we arrive at the assumption that each
α−cut is bounded and closed. On the real line, bounded and closed sets are
exactly compact sets, so, we will call the fuzzy sets with such α−cuts compact
fuzzy sets.

2.4 Fuzzy numbers

An important particular case of a compact fuzzy set is a fuzzy number in which
each α−cut is a (closed) interval.

In fuzzy data processing, mainly fuzzy numbers are used; however, more
general fuzzy sets are also sometimes needed: For example, if for some quantity
x, with some degree of belief α, we know that x2 belongs to the interval [1, 4],
and we know nothing about the sign of x, then the corresponding α−cut (set
of possible values of x) is not an interval, but a union of two disjoint intervals
[−2,−1] ∪ [1, 2].

2.5 The problem of invertibility is non-trivial for fuzzy
numbers, because subtraction cannot reconstruct x
from x+ y and y

For real numbers, the question of whether addition is invertible or not, is trivial:
in order to reconstruct x from x + y and y, we simply subtract y from x + y,
and get (x+ y)− y = x.

For fuzzy sets, both addition and subtraction can be defined, but, in general,
the difference (X + Y ) − Y is not equal to X: e.g., even if we take crisp sets
X = Y = [0, 1], we have

X + Y = [0, 1] + [0, 1] = {x+ y |x ∈ [0, 1]& y ∈ [0, 1]} = [0, 2]

and
(X + Y )− Y = [0, 2]− [0, 1] =

{z − y | z ∈ [0, 2]& y ∈ [0, 1]} = [−1, 2] ̸= [0, 1] = X.

Thus, for fuzzy sets and fuzzy numbers, we cannot simply reconstruct x from
x + y and y by subtraction. Hence, for fuzzy sets and fuzzy numbers, the
question of whether we can reconstruct x from x+ y and y becomes non-trivial.
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2.6 Our answer to the main question

Our answer to the main question is:

• For fuzzy numbers, addition is invertible.

• For more general (compact) fuzzy sets, addition is not invertible.

3 Definitions and results

3.1 First result: for fuzzy numbers, addition is invertible,
but if we add one extra fuzzy set, addition stops being
invertible

Definition 1.

• Let U be a set (called Universe of discourse). By a fuzzy subset X of the
set U , we mean a mapping that maps each number α ∈ (0, 1] into a set
αX ⊆ U in such a way that if α ≥ β, then αX ⊆ βX. The set αX is
called an α−cut of the fuzzy set X.

• A fuzzy set is called compact if all its α−cuts are compact.

• A fuzzy subset of U = IR is called a fuzzy number if all its α−cuts are
closed intervals.

Definition 2. Let C be a class of compact fuzzy subsets of the set IR of all real
numbers.

• For every two sets X,Y ∈ C, we define their sum X + Y by formula (2).

• We say that addition is invertible on C if for every three sets X,X ′, Y ∈ C,
X + Y = X ′ + Y implies that X = X ′.

PROPOSITION 1.

• Addition is invertible on the class of all fuzzy numbers.

• If a class C contains all fuzzy numbers and at least one compact fuzzy set
C that is not a fuzzy number, then addition is not invertible on C.

Comment. For reader’s convenience, all the proofs are placed in a special Proofs
section.
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3.2 Second result: if we require invertibility and start
with arbitrary compact fuzzy sets, we end up with
fuzzy numbers

Definition 3. We say that compact fuzzy sets X,X ′ ⊂ IRR are equivalent if
there exists a compact fuzzy set Y for which X + Y = X ′ + Y .

If we use arbitrary compact fuzzy sets, then we do not have invertibility.
So, if we want invertibility, we must represent some sets X by their supersets
I ⊃ X. In particular, if the sets X and X ′ are equivalent in the sense of the
above definition, then we must represent the sets X and X ′ by one and the
same superset.

PROPOSITION 2. Two compact fuzzy sets X and X ′ are equivalent iff for
every α, inf(αX) = inf(αX ′) and sup(αX) = sup(αX ′).

Due to Proposition 2, if we want invertibility, then we must represent all
equivalent fuzzy sets by a single set. The class of all equivalent sets is the class
of all sets X with given infimum and supremum of each α−cut. All these sets
are contained in the fuzzy number with α−cuts [inf(αX), sup(αX)], which can
thus serve as the desired representative. So, if we want invertibility of addition,
we get fuzzy numbers.

3.3 Invertible operations beyond addition

We have already mentioned that there are other invertible operations besides
addition: e.g., multiplication of positive numbers, exponentiation, etc. Like ad-
dition, these operations can also be extended from numbers to arbitrary fuzzy
sets of numbers (see, e.g., [9]), in particular, to fuzzy numbers. For these oper-
ations, extensions to fuzzy numbers are also invertible.

Definition 4.

• Let A and B be connected subsets of IR. We say that a continuous function
f : A × B is invertible if f(a, b) = f(a′, b) implies a = a′, and f(a, b) =
f(a, b′) implies b = b′.

• By an fuzzy extension of a function f , we mean a function that maps fuzzy
sets X and Y into a fuzzy set f(X,Y ) defined by the following α−cuts:

αf(X,Y ) = {f(x, y) |x ∈ αX and y ∈ αY }.

• We say that the fuzzy extension f(X,Y ) is invertible if for every fuzzy
numbers X, X ′, Y , and Y ′, f(X,Y ) = f(X ′, Y ) implies X = X ′, and
f(X,Y ) = f(X,Y ′) implies Y = Y ′.
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PROPOSITION 3. If a continuous function f is invertible, then its fuzzy
extension is also invertible.

Comment. Without continuity, this result is not necessarily true. For example,
let s(x) denote a function that swaps 0 and 1 and leaves all other values intact.
Then, the function f(a, b) = s(a) + b is invertible. However, for crisp intervals
X = [−0.5, 0.5], X ′ = [−0.5, 1], and Y = [0, 1], we have s(X) = [−0.5, 0) ∪
(0, 0.5] ∪ {1}, and f(X,Y ) = s(X) + Y = [−0.5, 1) ∪ (0, 1.5] ∪ [1, 2] = [−0.5, 2];
also, s(X ′) = X ′, and f(X ′, Y ) = X ′ + Y = [−0.5, 1] + [0, 1] = [−0.5, 2]. So,
here, f(X,Y ) = f(X ′, Y ) but X ̸= X ′.

4 Invertibility of addition for fuzzy sets in multi-
dimensional space

Definition 1′. Let d ≥ 1 be an integer, and let C be a class of compact fuzzy
subsets of the set IRd. We say that addition is invertible on C if for every three
sets X,X ′, Y ∈ C, X + Y = X ′ + Y implies that X = X ′.

To formulate the result, we must give a new definition:

Definition 5.

• A fuzzy subset of the set IRd is called convex if for every α, its α−cut is
convex.

• Let us define the convex hull X ′ = conv(X) of a fuzzy set X as a fuzzy
set defined by α−cuts α(X ′) = conv(αX).

PROPOSITION 1′.

• Addition is invertible on the class of all compact convex fuzzy sets.

• If a class C contains all compact convex fuzzy sets and at least one non-
convex compact fuzzy set C, then addition is not invertible on C.

Definition 2′. Let d ≥ 1 be an integer. We say that compact fuzzy sets
X,X ′ ⊂ IRd are equivalent if there exists a compact set Y ⊂ IRd for which
X + Y = X ′ + Y .

PROPOSITION 2′. Two compact fuzzy sets X,X ′ ⊂ IRd are equivalent (in
the sense of Definition 2′) iff conv(X) = conv(X ′).

So, if we want invertibility, we must restrict ourselves to convex fuzzy sets
only.
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5 Invertibility of addition for the case when &
is represented not by min, but by an arbitrary
strictly Archimedean t-norm

In the previous sections, we used a formula for the sum X = X1 +X2 of fuzzy
sets X1 and X2 with membership functions µ1(x⃗) and µ2(x⃗) that was, in effect,
equivalent to the extension principle

µ(x⃗) = sup
y⃗
(T (µ1(y⃗), µ2(x⃗− y⃗)) (3)

for the case when we take min(a, b) as a t-norm T (a, b).
It is reasonable to ask what happens to invertibility if, instead of minimum,

we take algebraic product T (a, b) = a ·b, or, more generally, an arbitrary strictly
Archimedean t-norm.

In order to formulate our answer to this question, let us recall the definitions:

Definition 6. (see, e.g., [4, 11]) A function T : [0, 1]× [0, 1] → [0, 1] is called a
t-norm if it satisfies the following four conditions:

• T (1, a) = a for all a;

• T (a, b) = T (b, a) for all a and b;

• T (a, T (b, c)) = T (T (a, b), c)) for all a, b, and c;

• if a ≤ a′ and b ≤ b′, then T (a, b) ≤ T (a′, b′).

Definition 7. [4, 11]

• A t-norm T (a, b) is called Archimedean if it is continuous and T (a, a) < a
for all a ∈ (0, 1).

• An Archimedean t-norm is called strictly Archimedean if it is strictly in-
creasing for a, b ∈ (0, 1).

Proposition. [13, 6, 4, 11]

• For every continuous strictly decreasing function φ : [0, 1] → [0,∞], the
function

T (a, b) = φ−1(φ(a) + φ(b)) (4)

is a strictly Archimedean t-norm.

• If T (a, b) is a strictly Archimedean t-norm, then there exists a continuous
strictly decreasing function φ : [0, 1] → [0,∞] for which T (a, b) can be
represented by the formula (4).
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Example. In particular, the algebraic sum can be represented in this form for
φ(a) = − log(a).

Comment. In this section, by a fuzzy set X ⊆ IRd, we understand a continuous
function µ : IRd → [0, 1]. (As one can see from the proof, the results are actually
true for more general membership functions as well.)

Definition 8. Let T (a, b) be a strictly Archimedean t-norm defined by a formula
(4). We say that a compact fuzzy set X ⊆ IRd with a membership function µ(x⃗)
is T−convex if the function x⃗ → φ(µ(x⃗)) is a convex function from IRd to [0,∞].

Comment. A fuzzy set is usually called convex if all its α−cuts are convex.
In this sense, every fuzzy number is convex. The notion of T−convexity is
stronger: not only we require that each α−cut is convex, but we also require
that the function f(x⃗) = φ(µ(x⃗)) is convex, i.e., that for this function f ,

f(
x⃗+ y⃗

2
) ≤ f(x⃗) + f(y⃗)

2

for all possible x⃗ and y⃗.

PROPOSITION 4. Let addition of fuzzy sets be defined by the formula (3)
with a strictly Archimedean t-norm T (a, b) of type (4). Then:

• Addition is invertible on the class of all compact T−convex fuzzy sets.

• If a class C contains all compact T−convex fuzzy sets and at least one
non−T−convex compact fuzzy set C, then addition (3) is not invertible
on C.

Comments.

• For T (a, b) = min(a, b), it was sufficient to require that all fuzzy sets are
fuzzy numbers, and invertibility followed. According to Proposition 4,
for T ̸= min, being a fuzzy number is not sufficient for invertibility: it is
necessary also to require that a certain function related to the membership
function is convex.

• In particular, for algebraic product, invertibility is equivalent to the con-
vexity of the function − log(µ(a)). If the membership function µ(x) is dif-
ferentiable, then the required convexity is equivalent to non-negativeness
[−(log(µ(a))]′′ ≥ 0 of the second derivative of −(log(µ(a)), i.e., to the
inequality µ′′(a) ≤ (µ′(a))2/µ(a).

• The invertibility problem for multiplication of positive real numbers and
corresponding fuzzy sets can be reduced to invertibility for addition if we
take into consideration that x ·y = exp(log(x)+ log(y)). Thus, the largest
class of membership functions for which multiplication is invertible consists
of exactly those fuzzy sets X for which addition is invertible for log(X).
In other words, we must require that the mapping x → φ(µ(log(x))) is a
convex function.
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6 Proofs

For crisp sets, similar results were proved in [5]. In this paper, we extend the
main ideas of [5] to fuzzy sets.

6.1 Proof of Proposition 1

If both X and Y are fuzzy numbers, i.e., if for every α, αX = [αx−,α x+]
and αY = [αy−,α y+], then addition is invertible: indeed, in this case, the
sum Z = X + Y is a fuzzy number for which for every α, the α−cut is an
interval [αz−,α z+] with the bounds αz− = αx− + αy− and αz+ = αx+ + αy+.
Therefore, if we know Z and Y , we can reconstruct X (i.e., all α−cuts of X) by
using formulas αx− = αz− − αy− and αx+ = αz+ − αy+.

Comment. This part of the proof follows the idea that was originally presented,
for crisp sets, by S. Markov in [7, 8].

Let us now assume that C contains all fuzzy numbers, and also a compact
fuzzy set C that is not a fuzzy number. Let us show that in this case, addition
is not invertible. Indeed, since C is a compact fuzzy set, for every α, its α−cut
αC is compact, and therefore, has finite infimum αc− and supremum αc+. From
the monotonicity of αC, it follows that the sequence of intervals [αc−,α c+] is
also monotonic. Thus, this family defines a fuzzy number. Let us denote this
fuzzy number by Y , and let us take X = C and X ′ = Y . Then, for every α,
αX ′ + αY = [2 · αc−, 2 · αc+]. Let us show that the sum X + Y is also equal to
the interval [2 · αc−, 2 · αc+]:

• First, due to our choice of αc+ and αc−, we have αX = αC ⊆ [αc−,α c+] =
α(X ′), hence,

αX + αY ⊆ α(X ′) + αY = [2 · αc−, 2 · αc+].

• Second, since C = X is a compact fuzzy set, its α−cuts are compact sets,
and hence, we have {αc−, αc+} ⊆ αX, and therefore, for the sum X + Y
(as defined by Definition 2)

αX + αY ⊇ {αc−,α c+}+ αY =

{αc−,α c+}+ [αc−,α c+] =

[2 · αc−,α c− + αc+] ∪ [αc− + αc+, 2 · αc+] =

[2 · αc−, 2 · αc+].

So, αX + αY ⊆ [2 · αc−, 2 · αc+] and αX + αY ⊇ [2 · αc−, 2 · αc+]; hence,

αX + αY = [2 · αc−, 2 · αc+] = α(X ′) + αY

for all α. Hence, X + Y = X ′ + Y . However, X = C is not a fuzzy number,
and X ′ is; therefore, X ̸= X ′. Hence, this triple is the desired counterexample
to invertibility. Q.E.D.
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6.2 Proof of Proposition 2

Let us denote αx− = inf(αX), αx′− = inf(αX ′), αy− = inf(αY ), αx+ =
sup(αX), αx′+ = sup(αX ′), and αy+ = sup(αY ).

The infimum of α(X + Y ) = αX + αY is attained when x is the smallest,
and y is the smallest, i.e.,

inf(αX + αY ) = αx− + αy−.

Similarly,
inf(α(X ′) + αY ) = αx′− +α y−.

Therefore, if X + Y = X ′ + Y , then for every α, infα(X + Y ) = infα(X ′ + Y ),
αx−+ αy− = αx′−+ αy− and hence, αx− = αx′−. Likewise, we can prove that
αx+ = αx′+.

Let us now show that if for all α, αx− = αx′− and αx+ = αx′+, then
αX + αY = α(X ′) + αY for some Y . Indeed, as we have shown in the proof
of Proposition 1, for the fuzzy number Y defined as αY = [αx−,α x+], we have
α(X+Y ) = α(X ′+Y ) = [2 · αx−, 2 · αx+] and hence, X+Y = X ′+Y . Q.E.D.

6.3 Proof of Proposition 3

Since f is invertible, for every a, the function b → f(a, b) is continuous and
1-to-1; therefore, this function is strictly monotonic (i.e., strictly increasing or
strictly decreasing).

Let us show that either for every a the function fa(b) defined as fa(b) =
f(a, b) is increasing, or for every a, this function is decreasing.

If the set B consists of only one point b, then this statement is trivially
true. So, let us consider the case when the set B contains at least two different
points b′ < b′′. In this case, if for some a, the function fa(b) is increasing, then
f(a, b′) = fa(b

′) < fa(b
′′) = f(a, b′′). Since f is continuous, we can conclude

that f(a′, b′) < f(a′, b′′) for all a′ from some open neighborhood of a. Therefore,
for these a′, the function fa′(b) must also be strictly increasing. So, the set Ain

of all a ∈ A for which the function fa(b) is increasing is open. Similarly, the set
Ade of all a ∈ A for which the function fa(b) is decreasing is open. Therefore,
the set A is represented as the union of two disjoint open sets: A = Ain ∪ Ade.
Since A is connected, one of these sets must be empty. Therefore, either the
function b → fa(b) is strictly increasing for all a, or the function b → fa(b) is
strictly decreasing for all a.

Similarly, either the function a → f(a, b) is strictly increasing for all b, or it
is strictly decreasing for all b. Totally, we have four possible cases, depending
on whether f is increasing or decreasing in a, and increasing or decreasing in b.

We are now ready to show that the extension of f to fuzzy numbers is
invertible. We will show it for the case when f is strictly increasing in both a and
b (the proof for the three other possible cases is similar). Indeed, in this case,
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due to monotonicity, f([αx−,α x+], [αy−,α y+]) = [f(αx−,α y−), f(αx+,α y+)].
If we know f(αx−,α y−) and αy−, then, due to the fact that αx → f(αx,α y−) is
strictly increasing, we can uniquely reconstruct αx−. Similarly, we can uniquely
reconstruct αx+. So, the fuzzy extension of f is indeed invertible. Q.E.D.

6.4 Proof of Proposition 1′

The fact that addition is invertible on compact convex fuzzy sets easily follows
from the known properties of convex sets: indeed, it is known (see, e.g., [12],
Section 13) that a compact convex set C is uniquely determined by its support
function δ∗(x |C) = sup{⟨x, x∗⟩ |x∗ ∈ C} (where ⟨a, b⟩ =

∑
ai · bi is a scalar

(dot) product), and that the support function of the sum of two sets is equal
to the sum of their support functions: δ∗(x |C1 +C2) = δ∗(x |C1)+ δ∗(x |C2)

1.
Hence, if we know the α−cuts α(X + Y ) = αX + αY and αY , we can deter-
mine support functions for these sets, subtract these functions, get the support
function for αX, and reconstruct αX.

Let us now show that if we add a non-convex compact fuzzy set C to the
class of all convex compact sets, then we lose invertibility. Let us show that
X + Y = X ′ + Y for X = C, X ′ = conv(X) (a convex hull of X), and Y =
d · conv(X).

Namely, we will show that for each α,

αX + αY = α(X ′) + αY = (d+ 1) · conv(αX).

To simplify the exposition, in the remaining part of this proof, we will omit the
index α and denote the set and its α−cut by the same letter.

It is clear that X ′ + Y = (d + 1) · conv(X), and that X + Y ⊆ X ′ + Y =
(d+1)·conv(X). So, it is sufficient to prove that every point z ∈ (d+1)·conv(X)
belongs to the sum X + Y .

Indeed, from z ∈ (d+1) · conv(X) it follows that z/(d+1) ∈ conv(X). Since
X is a subset of a d−dimensional space, the point z can be represented as a
convex combination of d + 1 points from X: z =

∑
αkxk for some αk ≥ 0,∑

αk = 1, xk ∈ X (strictly speaking, we need at most d+1 points xk; however,
if less than d+ 1 points are sufficient, then we can add a few other points with
αk = 0). Since the sum of (d+ 1) values αk is equal to 1, at least one of these
values αk is ≥ 1/(d+ 1). Let us denote one of such points by αk0 . Let us take
βk = αk for k ̸= k0 and βk = αk0 − 1/(d+ 1). Then,

z

d+ 1
=

∑
αkxk =

1

d+ 1
xk0 +

∑
βkxk.

Here, βk ≥ 0, and ∑
βk = 1− 1

d+ 1
=

d

d+ 1
.

1Caution: This notion of the support function of a convex (crisp) set is standard in convex
set theory (we have taken it from [12]). This notion is different from a notion of a support of
a fuzzy set µ : X → [0, 1], that is usually defined, in fuzzy set theory, as {x |µ(x) > 0}.
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Hence, if we multiply both sides of the displayed equality by d + 1, we can
conclude that

z = xk0 + d · (
∑

γkxk),

where γk = (d + 1)βk/d are non-negative numbers with the sum equal to 1.
Here, xk0

∈ X, and d · (
∑

γkxk) ∈ d ·X ′ = Y . Hence, z ∈ X + Y . Q.E.D.

6.5 Proof of Proposition 2′

In this proof, we will also omit the index α of the α−cut.
If X + Y = X ′ + Y for some X, X ′, and Y , then the support functions

coincide:
δ∗(x |X + Y ) = δ∗(x |X ′ + Y );

from δ∗(x |X+Y ) = δ∗(x |X)+δ∗(x |Y ) = δ∗(x |X ′+Y ) = δ∗(x |X ′)+δ∗(x |Y ),
we conclude that δ∗(x |X) = δ∗(x |X ′) and hence, that conv(X) = conv(X ′).

Vice versa, if conv(X) = conv(X ′), then, as we have proved in the proof
of Proposition 1′, there exists a set Y (namely, Y = d · conv(X)) for which
X + Y = X ′ + Y (= (d+ 1) · conv(X)). Q.E.D.

6.6 Proof of Proposition 4

Formula (4) can be rewritten as φ(T (a, b)) = φ(a) + φ(b). Thus, formula (3)
can be rewritten as

M(x⃗) = inf
y⃗
(M1(y⃗) +M2(x⃗− y⃗)), (5)

where we denoted M(x) = φ(µ(x)), M1(x) = φ(µ1(x)), and M2(x) = φ(µ2(x)).
It is known (see, e.g., [12]) that if we take two sets ∆1 = {(x⃗, y) | y ≥ M1(x⃗)}
and ∆2 = {(x⃗, y) | y ≥ M2(x⃗)} in the (d+1)−space IRd+1, then the (Minkowski)
sum ∆ = ∆1 + ∆2 = {δ1 + δ2 | δ1 ∈ ∆1 & δ2 ∈ ∆2} of these two sets can be
represented as ∆ = {(x⃗, y) | y ≥ M(x⃗)}, where M(x⃗) is defined by the formula
(5).

Thus, addition of fuzzy sets Xi (in the sense of formula (3)) is equivalent
to addition of the corresponding crisp sets ∆i (in the standard sense). Hence,
arguing like in the proof of Proposition 1′, we can conclude that invertibility is
attained when the sets ∆i are convex sets. One can easily check (see also [12])
that convexity of a set ∆ = {(x⃗, y) | y ≥ M(x⃗)} is equivalent to convexity of the
corresponding function M(x). Q.E.D.
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