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Abstract. A natural approach to designing an intelligent system is to incorporate
expert knowledge into this system. One of the main approaches to translating this
knowledge into computer-understandable terms is the approach of fuzzy logic. It
has led to many successful applications, but in several aspects, the resulting com-
puter representation is somewhat different from the original expert meaning. Two
related approaches have been used to make fuzzy logic more adequate in represent-
ing expert reasoning: granularity and higher-order approaches. Each approach is
successful in some applications where the other approach did not succeed so well;
it is therefore desirable to combine these two approaches. This idea of combining
the two approaches is very natural, but so far, it has led to few successful practical
applications. In this chapter, we provide results aimed at finding a better (ideally
optimal) way of combining these approaches.
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1 Introduction: Fuzzy Logic, Granularity, and Higher
Order Approaches

Why fuzzy logic. A natural approach to designing an intelligent system is
to incorporate expert knowledge into this system.

Experts are often not 100% certain in the statements they make; therefore,
in the design of knowledge-based systems, it is desirable to take this uncer-
tainty into consideration. Usually, this uncertainty is described by a number
from the interval [0, 1]; this number is called subjective probability, degree of
certainty, etc. (see, e.g., [50]). Situations when an expert is 100% sure that
a statement S is true are describe by the subjective probability d(S) = 1;
situations when an expert is 100% sure that a statement is false are described
by the subjective probability d(S) = 0; situations when an expert is not sure
about a statement are described by intermediate values d(S) ∈ (0, 1).

The use of values from the interval [0, 1] to describe the expert’s certainty
is the main idea behind fuzzy logic. Fuzzy logic, introduced by L. Zadeh
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is 1965 [55], is currently one of the main approaches to translating expert
knowledge into computer-understandable terms; see, e.g., [19,45].

Beyond [0, 1]-based fuzzy logic. The [0, 1]-based approach has led to many
successful applications. However, the [0, 1]-based fuzzy logic is, by itself, only
an approximation to the actual human reasoning about uncertainty.

Indeed, how can we describe the expert’s degree of confidence d(S) in a
certain statement S? A natural way to determine this degree is, e.g., to ask
an expert to estimate his degree of confidence on a scale from 0 to 10. If he
selects 8, then we take d(S) = 8/10.

To get a more accurate result, we can then ask the same expert to estimate
his degree of confidence on a finer scale, e.g., from 0 to 100, etc. For example,
if an expert selects 81, we will take d(S) = 81/100 = 0.81. If we want an
even more accurate estimate, we can ask the expert to estimate his degree of
confidence on an even finer scale, etc.

The problem with this approach is that experts cannot describe their
degrees of too fine scales. For example, an expert can point to 8 on a scale
from 0 to 10, but this same expert will hardly be able to pinpoint a value on
a scale from 0 to 100.

So, to attain a more adequate description of human reasoning, we must
modify the traditional [0, 1]-based fuzzy logic. Two types of modifications
have been proposed.

Granularity. One modification – proposed by Zadeh in [56] – is to use the
granularity of expert estimates. The simplest way of using this granularity
is to take the finest (finite) scale which an expert can still use, and take the
values corresponding to this scale as the desired degrees of confidence.

For example, if an expert can meaningfully describe his or her degree of
confidence on a scale from 0 to 10, but not on a scale from 0 to 11, then the
scale 0 to 10 is the finest scale which an expert can still use.

This approach leads to a finite-valued fuzzy logic, in which the set of
truth values V is finite. For example, if the finest scale is a scale from 0 to 10,
then possible degrees of confidence are 0/10, 1/10, . . . , 1=10/10 – overall, 11
possible degrees. This approach has been successfully used in practice; see,
e.g., [1,13,28,39,47].

Interval-valued approach. Another modification – also originally proposed
by Zadeh – is to describe the expert’s degree of confidence by an interval from
[0, 1]. For example, if an expert estimates his degree of confidence by a value
8 on a 0 to 10 scale, then the only thing that we know about the expert’s
degree of confidence is that it is closer to 0.8 (8/10) than to 0.7 or to 0.9, i.e.,
that it belongs to the interval [0.75, 0.85].

So, within this second modification, a natural way of describing degrees
of confidence more adequately is to use intervals a = [a−, a+] instead of real
numbers. In this representation, real numbers can be viewed as particular –
degenerate – cases of intervals [a, a]. The Zadeh’s idea of using intervals have
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been further developed by Bandler and Kohout [2], Türkşen [52], and others;
for a recent survey, see, e.g., [32,44].

From interval-valued to more general second order approach. In
the interval-valued fuzzy approach, to describe each degree of confidence, we
must describe two real numbers: the lower endpoint and the upper endpoint
of the corresponding “confidence interval”.

We can go one step further and take into consideration that the endpoints
of the corresponding interval are also not precisely known. Thus, each of
these endpoints is, in actuality, an interval itself. So, to describe a degree
of confidence, we now need four real numbers: two to describe the lower
endpoint, and two to describe the upper one.

This modified interval approach is also only an approximation to real
reasoning. Indeed, in this approach, we assume that while an expert cannot
describe his degree of certainty d in a statement A by a single number, he
is, nevertheless, perfectly able, given a statement A and a degree d, to tell
whether d is a possible degree of certainty. In reality, if you ask the expert
whether his degree of certainty about a certain statement A can be described
by a certain number d (e.g., d = 0.701), the expert will, sometimes, not be
able to give a definite answer, he will be uncertain about it. This uncer-
tainty can be, in its turn, described by a number from the interval [0, 1]. It
is, therefore, natural to represent our degree of certainty in a statement A
not by a single (crisp) number d(A) ∈ [0, 1] (as in the [0, 1]-based descrip-
tion), but rather by a function µd(A) which assigns, to each possible real
number d ∈ [0, 1], a degree µd(A)(d) with which this number d can be the
(desired) degree of certainty of A. This is called a second-order description of
uncertainty. General second order descriptions have been successfully used in
many practical applications ranging from control (including robotic control)
to medicine to military decision-making; see, e.g., [32,33,37,44].

From second order to general higher order approach. In second-order
description, to describe a degree with which a given number d ∈ [0, 1] can be
a degree of certainty of a statement A, we use a real number µd(A)(d). As we
have already mentioned, it is difficult to describe our degree of certainty by
a single number. Therefore, to make this description even more realistic, we
can represent each degree of certainty d(P (x)) not by a (more traditional)
[0, 1]-based description, but by a second order description. As a result, we get
the third order description.

Similarly, to make our description even more realistic, we can use the
third order descriptions to describe degrees of certainty; then, we get fourth
order uncertainty, etc.

Towards combining the granularity and higher-order approaches.
Both granularity and second order approaches aim at the same goal: to make
a computer representation of expert knowledge closer to the actual human
reasoning. The fact that both approaches resulted in successful practical ap-
plications indicate that these two approaches capture important aspects of
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human reasoning. The fact that each approach is successful in some appli-
cations where the other approach did not succeed so well shows that these
approaches capture different aspects of human reasoning. It is therefore de-
sirable to combine these two approaches.

This idea of combining the two approaches is very natural, and it has
been actually tried. However, so far, it has led to few successful practical
applications. It is therefore desirable to find an optimal way of combining
these approaches.

What we are planning to do. This chapter presents the results of the
authors’ preliminary research in this direction. Before deciding what is the
best way to combine these two approaches, we should decide which versions
of these approaches are the best to use (and to combine). We start with
granularity. In Section 2, we show, on some reasonable examples, what is
the optimal granularity. In Section 3, we handle the problem of selecting
operations that are in optimal agreement with the granularity. In Section
4, we use the above-described “common origin” of granularity and higher-
order logics to find out which of the higher-order approaches is optimal.
Finally, in Section 5, we provide preliminary results about operations which
are consistent both with granularity and higher-order logics.

This chapter is largely an overview of the results published by the authors
in several conference papers [18,21,22,40]. In each of these results, we:

• provide a formalization of the corresponding problem;
• provide a solution to this problem – if such a general solution is possible

at all – we will prove that for some of these problems, a general solution
is not possible; and

• illustrate the problem and the solution on one or several examples.

Most formalizations, solutions, and proofs from this chapter are the authors’;
the missing proofs can be found in the above-cited conference proceedings.

A few words about our choice of examples. Our main goal is to provide
an adequate description of expert reasoning. Therefore, to gauge how well
we achieved this goal, we must show, on examples, that our approach is
more adequate in describing expert reasoning than the traditional [0, 1]-based
fuzzy approach. To make this comparison convincing, we must consider cases
when there is no disagreement on how an expert reached her conclusion.
Such cases are extremely rare in real-life expert reasoning: for example, it is
very difficult for a lay person to understand why an emergency room medical
doctor makes a decision that may save or ruin the life of a patient. It is difficult
to understand because if such decisions were easy, we would not need experts
to make these decisions. Since it is difficult to use real-life expert decisions to
compare the new methods with the more traditional ones, we therefore use
simplified “toy” examples for this comparison, examples where – unlike most
real-life situations – reasoning is easy to understand.
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2 Optimal Granularity: Case Study

Granularity: case study. In accordance with our plan, let us start with
describing an example in which we can determine the optimal granularity.
This example relates to crude estimates of quantities.

People often need to make crude estimates of a quantity, e.g., estimat-
ing the size of a crowd or someone’s salary. When people make these crude
estimates, they usually feel reasonably comfortable choosing between alter-
natives which differ by a half order of magnitude (HOM). For example, a
person can reasonably estimate whether the size of a crowd was closer to
100, or to 300, or to 1000. If we ask for an estimate on a more refined scale,
e.g., 300 or 350, people will generally be unable to make it. If we ask for an
estimate on a coarser scale, e.g., 100 or 1000, people may be able to answer,
but they will feel their answer is uninformative.

A particularly striking case of the utility of HOMs is presented by coinage
and currency. Most countries have, in addition to denominations for the pow-
ers of ten, one or two coins or bills between every two powers of ten. Thus,
in the United States, in addition to coins or bills for $.01, $.10, $1.00, $10.00,
and $100.00, there are also coins or bills in common use for $.05, $.25, $5.00,
$20,00, and $50.00. These latter provide rough HOM measures for monetary
amounts.

It is natural that people should categorize the sizes of physical objects in
terms of how they must interact with them. When two objects are roughly
of the same size, we manipulate them or navigate about them in roughly the
same way. But when one object is about three times larger in linear dimension
than another, it must be handled in a different manner. Thus, an orange can
be held in one hand, whereas a basketball is more easily held with two, A
carton is held in our arms rather than our hands, and carrying a table often
requires a second person. For further arguments along these lines, see [17].

These observations lead naturally to the following question: If we are to
have a rough logarithmic classification scheme for quantities, what is the
optimal granularity for commonsense estimates?

There are three requirements we would like the classification scheme to
have.

• The categories should be small enough that the types of our interactions
with objects are predictable from their category; that HOMs accomplish
this is argued above and in [17].

• The categories should be large enough that ordinary variation among
objects in a class do not usually cross category boundaries and that ag-
gregation operations have reasonably predictable results; we show that
HOMs satisfy these requirements.

Thus we describe two different models for commonsense estimation and show
that in both models the optimal granularity is in good accordance with obser-
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vations about the utility of HOMs. We thus provide a theoretical explanation
for the importance of half orders of magnitude in commonsense reasoning.
Main idea behind Gaussian model. We are interested in the situation
where we estimate a quantity which can only take non-negative values. To
estimate the values of this quantity, we select a sequence of positive numbers
. . . < e0 < e1 < e2 < . . . (e.g., 1, 3, 10, etc.), and every actual value x
of the estimated quantity is then estimated by one of these numbers. Each
estimate is approximate: when the estimate is equal to ei, the actual value
x of the estimated quantity may differ from ei; in other words, there may be
an estimation error ∆x = ei − x 6= 0.

What is the probability distribution of this estimation error? This error is
caused by many different factors. It is known that under certain reasonable
conditions, an error caused by many different factors is distributed according
to Gaussian (normal) distribution (see, e.g., [53]; this fact – called central limit
theorem – is one of the reasons for the widespread use of Gaussian distribution
in science and engineering applications). It is therefore reasonable to assume
that ∆x is normally distributed.

It is known that a normal distribution is uniquely determined by its two
parameters: its average a and its standard deviation σ. Let us denote the
average of the error ∆x by ∆ei, and its standard deviation by σi. Thus,
when the estimate is ei, the actual value x = ei−∆x is distributed according
to Gaussian distribution, with an average ei −∆ei (which we will denote by
ẽi), and the standard deviation σi.

For a Gaussian distribution with given a and σ, the probability density
is everywhere positive, so theoretically, we can have values which are as far
away from the average a as possible. In practice, however, the probabilities of
large deviations from a are so small that the possibility of such deviations can
be safely neglected. For example, it is known that the probability of having
the value outside the “three sigma” interval [a − 3σ, a + 3σ] is ≈ 0.1% and
therefore, in most engineering applications, it is assumed that values outside
this interval are impossible.

There are some applications where we cannot make this assumption. For
example, in designing computer chips, when we have millions of elements on
the chip, allowing 0.1% of these elements to malfunction would mean that at
any given time, thousands of elements malfunction and thus, the chip would
malfunction as well. For such critical applications, we want the probability of
deviation to be much smaller than 0.1%, e.g.,≤ 10−8. Such small probabilities
(which practically exclude any possibility of an error) can be guaranteed if
we use a “six sigma” interval [a−6σ, a+6σ]. For this interval, the probability
for a normally distributed variable to be outside it is indeed ≈ 10−8.

Within this Gaussian model, what is the optimal granularity?
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Optimal granularity: informal explanation. In accordance with the
above idea, for each ei, if the actual value x is within the “three sigma” range
Ii = [ẽi − 3σi, ẽi + 3σi], then it is reasonable to take ei as the corresponding
estimate.

We want a granulation which would cover all possible values, so each
positive real number must be covered by one of these intervals. In other
words, we want the union of all these intervals to coincide with the set of all
positive real numbers.

We also want to makes sure that all values that we are covering are indeed
non-negative, i.e., that for every i, even the extended “six sigma” interval

[ẽi − 3σi, ẽi + 3σi] (1)

only contains non-negative values.
Finally, since one of the main purposes of granularity is to decrease the

number of “labels” that we use to describe different quantities, we want
to consider optimal (minimal) sets of intervals. Formally, we can interpret
“minimal” in the sense that whichever finite subset we pick, we cannot enlarge
their overall coverage by modifying one or several of these intervals. Let us
formalize these ideas.

In the following definitions, we will use the fact that an arbitrary interval
[a−, a+] can be represented in the Gaussian-type form [a − 3σ, a + 3σ]: it is
sufficient to take a = (a− + a+)/2 and σ = (a+ − a−)/6.
Definition 2.1.

• We say that an interval I = [a − 3σ, a + 3σ] is reliably non-negative if
every real number from the interval [a− 6σ, a + 6σ] is non-negative.

• A set {Ii}, i = 1, 2, . . ., of reliably non-negative intervals Ii is called a
granulation if every positive real number belongs to one of the intervals Ii.

• We say that a granulation can be improved if, for some finite set
{i1, . . . , ik}, we can replace intervals Iij with some other intervals I ′ij

for which
k⋃

j=1

Iij ⊂
k⋃

j=1

I ′ij

k⋃

j=1

Iij 6=
k⋃

j=1

I ′ij
, (2)

and still get a granulation.
• A granulation is called optimal if it cannot be improved.

Theorem 2.1. (Hobbs and Kreinovich [18]) In an optimal granulation, Ii =
[ai, ai+1], where ai+1 = 3ai.

So, half-orders of magnitude are indeed optimal.
Uniform model: motivations. In the Gaussian model, we started with a
3σ bound, and we ended up with a sequence of granules [ai, ai+1] in which
the boundary points ai form an arithmetic progression: ai+1 = q · ai and
ai = a0 · qi, with q = 3. We could start with a bound of 2.5σ, then we would
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have got a geometric progression with a different q. Which value of q is indeed
optimal?

To find out, let us take into consideration the fact that a granulation is not
just for storing values, it is also for processing these values. Of course, when
we replace the actual value by the granule to which it belongs, we lose some
information. The idea is to choose the q for which this loss is the smallest.

To estimate the loss, we will consider the simplest data processing oper-
ation possible: addition. If we know the exact values of two quantities A and
B, then we can compute the exact value of their sum A+B. In the granulated
case, we do not know the exact values of A and B, we only know the granules
to which A and B belong, and we want to find out to which of the granules
the sum belongs. For example, in the above half-order granulation, we know
that the first room has about 10 books, the second about 30, and we want
to express the total number of books in the two rooms in similar terms.

The trouble with this problem is that the sum may belong to two different
granules. Let us take an example in which we use granules [1, 3], [3, 9], [9, 27],
etc. Let us assume that all we know about the first quantity A is that A ∈
[1, 3], and all we know about the second quantity B is that B ∈ [3, 9]. In
this case, the smallest possible values of A + B is 1 + 3 = 4, and the largest
possible value of A + B is 3 + 9 = 12. In general, the sum A + B can thus
take any value from the interval [4, 12]. So, it could happen that the sum is
in the granule [3, 9], but it could also happen that the sum is in the granule
[9, 27].

If we want the granulation to be useful, we must assign a certain granule
to the sum A+B. Since in reality, the value A+B may belong to two different
granules, no matter which of the two granules we assign, there is always a
probability that this assignment is erroneous. We would like to select q for
which this error probability is the smallest possible.

In order to formulate this question in precise terms, we must describe the
corresponding probabilities. A natural way to describe them is as follows:
If all we know about A is that A belongs to a granule ai = [ai, ai+1], then
it is reasonable to consider all the values from this granule to be equally
probable, i.e., to assume that we have a uniform distribution on the interval
ai = [ai, ai+1]. Similarly, If all we know about B is that B belongs to a
granule aj = [aj , aj+1], then it is reasonable to consider all the values from
this granule to be equally probable, i.e., to assume that we have a uniform
distribution on the interval aj = [aj , aj+1]. Since we have no information
about the possible dependence between A and B, it is natural to assume
that A and B are independent random variables. We are now ready for the
formal definitions.

Let a0 > 0 and q ≥ 2 be real numbers, and let ak
def= a0 · qk and ai

def=
[ai, ai+1].
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Definition 2.2. For every three integers i, j, and k, we can define

P (ai + aj ∈ ak) (3)

as the probability that Ai + Aj ∈ ak, where Ai is uniformly distributed on
the interval ai, Aj is uniformly distributed on the interval aj , and Ai and Aj

are independent.

If, as a result of adding ai and aj , we select the granule ak, then the proba-
bility that this assignment is erroneous (i.e., that the actual value of Ai +Aj

is not in ak) is equal to 1 − P (ai + aj ∈ ak). For every i and j, we want to
minimize this error, so we select the value k for which this error probability
is the smallest:
Definition 2.3. For every two integers i and j, we define the sum ai + aj of
granules ai and aj as a granule ak for which the error probability

1− P (ai + aj ∈ ak) (4)

is the smallest possible. The error probability Eij related to this addition is
then defined as this smallest probability, i.e., as

Eij
def= min

k
(1− P (ai + aj ∈ ak)). (5)

Theorem 2.2. (Hobbs and Kreinovich [18]) When q ≥ √
2+1(≈ 2.41), then

ai + ai = ai+1, (6)

and
ai + aj = amax(i,j) for i 6= j. (7)

When 2 ≤ q <
√

2 + 1, then ai + ai = ai+1,

ai + ai+1 = ai+1 + ai = ai+2, (8)

and
ai + aj = amax(i,j) for |i− j| ≥ 2. (9)

It is worth mentioning that for every q, thus defined addition of granules
is commutative but not associative. Indeed, for q ≥ √

2 + 1, we have:

(a0 + a0) + a1 = a1 + a1 = a2, (10)

while
a0 + (a0 + a1) = a0 + a1 = a1 6= a2. (11)

For q <
√

2 + 1, we have:
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(a0 + a0) + a2 = a1 + a2 = a3, (12)

while
a0 + (a0 + a2) = a0 + a2 = a2 6= a3. (13)

Which q is the best? As a measure of quality of a given granulation, it is
natural to take the worst-case error probability, i.e., the error probability cor-
responding to the worst-case pair (i, j) (i.e., to the pair with the largest Eij):

Definition 2.4. By an error probability of a granulation, we mean the value

E(q) def= max
i,j

Eij . The granulation with the smallest possible error probability

is called optimal.

Theorem 2.3. (Hobbs and Kreinovich [18]) The granulation is optimal when

q3 − 5q2 + 4q + 1 = 0 (14)

(i.e., when q ≈ 3.9).

Conclusion. When people make crude estimates, they feel comfortable
choosing between alternatives which differ by a half-order of magnitude (e.g.,
were there 100, 300, or 1,000 people in the crowd), and less comfortable
making a choice on a more detailed scale (like 100 or 110 or 120) or on a
coarser scale (like 100 or 1,000). We have shown that for two natural models
of choosing granularity in commonsense estimates, in the optimal granularity,
the next estimate is 3-4 times larger than the previous one. Thus, we have
explained the commonsense HOM granularity.

3 Selecting Operations that Are in Optimal Agreement
with Granularity

Intuitive property of commonsense arithmetic. To explain the prob-
lem that we try to solve in this section, let us start with a joke that nicely
illustrates the notion of granularity and the difficulty of handling granular
data.

A museum guide tells the visitors that a dinosaur that they are looking
at is 14,000,005 years old. An impressed visitor asks how scientists can be so
accurate in their predictions. “I don’t know how they do it, – explains the
guide – but 5 years ago, when I started working here, I was told that this
dinosaur is 14,000,000 years old, so now it must be 5 years older”.

This is clearly a joke, because from the common sense viewpoint, a di-
nosaur which was approximately 14,000,000 years old 5 years ago is still
14,000,000 years old. In more precise terms, if we add 5 to a “fuzzy” num-
ber “approximately 14,000,000”, we should get the answer “approximately
14,000,000”.
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Similarly, if a person weighs, say, approximately 100 kg, and he gains 1
kg, he still weighs approximately 100 kg. So, if we add 1 to a “fuzzy” number
“approximately 100”, we should get the answer “approximately 100”.

In general, if a is much larger than b (a À b), and we add b to “ap-
proximately a”, we should get “approximately a”. It is therefore natural to
expect formal systems which formalize commonsense reasoning to have this
property.
Fuzzy arithmetic: a natural formalization of commonsense arith-
metic. A natural way of dealing with approximately known values (such as
“approximately a”) is fuzzy arithmetic. In fuzzy arithmetic, each such value is
represented by a membership function µ(x) describing, for each real number
x, to what extent x matches the description (see, e.g., [19,45]).

For example, if the value that we want to formalize is “approximately a”
(for some given real number a), then the value x = a matches the described
property perfectly well (µ(a) = 1), while the more distant the value x from a,
the smaller the degree of matching. In other words, a natural way to represent
a property “approximately a” is to have a membership function µ(x) which:

• attains its maximum value 1 for x = a,
• increases for x < a, and
• decreases for x > a.

In practical applications, researchers have used membership functions µ(x)
of different shape to represent the property “approximately a”: Gaussian,
piece-wise linear, etc.; all these shapes have a clear maximum at x = a.

Vice versa, if we have a membership function µ(x) which:

• has a clear maximum at some point x = a,
• is increasing for x < a, and
• is decreasing for x > a,

it is natural to interpret this function as describing a property “approxi-
mately a”.

When several numbers A, B, etc., are described by membership func-
tions, we can use the extension principle to describe the result of applying
an arithmetic operation to these numbers. For example, if a number A is
described by a membership function µA(x), and the number B is described
by a membership function µB(x), then their sum C = A + B is described by
the following membership function:

µC(x) = max
y,z:y+z=x

min(µA(y), µB(z)). (15)

We can also have a more general formula, if we use an arbitrary t-norm
instead of the minimum.

Whether we use min or a more general t-norm, in the simple case when
the number B is crisp (B = b), the resulting membership function is equal to
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µC(x) = µA(x− b); in other words, it has the same shape as the membership
function for A – but it is shifted by b.

Problem: traditional fuzzy arithmetic does not have the desired
property. In many practical applications, the traditional fuzzy arithmetic
works well. Unfortunately, the traditional fuzzy arithmetic does not satisfy
the desired intuitive property.

Indeed, let A mean “approximately a” (e.g., “approximately 100”). Then,
the corresponding membership function µA(x) has a maximum at x = a, is
increasing for x < a and decreasing for x > a. When we add, to A, a crisp
number B = b (e.g., 1), we get a shifted membership function which has a
maximum at x = a+b, is increasing for x < a+b and decreasing for x > a+b.
In accordance with the above interpretation, we thus interpret the sum A+B
as “approximately a + b”. Thus, the sum “≈ 100”+1 is equal not to ≈ 100
as we would intuitively expect, but to ≈ 101.

Trapezoidal membership functions: can they help? At first glance, we
may think that the above problem of fuzzy arithmetic comes from the fact
that we considered fuzzy sets A(x) that have a maximum only at a single
point x = a. Maybe, to represent notions like the age of dinosaurs, we should
consider fuzzy sets with interval “core”, i.e., fuzzy sets A(x) which attain the
maximum at the entire interval. The most widely used examples of such fuzzy
sets are trapezoidal sets. Sets with interval core are clearly more suitable, but
do they solve the problem?

Let us consider such sets. To describe the property “approximately a”,
we usually consider “symmetric” fuzzy sets, i.e., fuzzy sets µ(x) in which the
value µ(x) depend only on the distance between x and a, i.e., in which, for
each distance d > 0, the degrees µ(a − d) and µ(a + d) are equal. For such
sets, the interval core is centered around a, i.e., has the form [a−∆, a + ∆]
for some value ∆ > 0. The property “approximately a” is thus represented
by a membership function µ(x) which:

• attains its maximum value 1 for x from the interval [a−∆, a + ∆];
• increase for x < a−∆, and
• decreases for x > a + ∆.

Vice versa, if we have a membership function µ(x) which satisfies these three
properties for some value a, then it is natural to interpret this function as
describing a property “approximately a”.

If A mean “approximately a” (e.g., “approximately 100”), then, the corre-
sponding membership function µA(x) has a maximum for x ∈ [a−∆, a+∆],
is increasing for x < a − ∆ and decreasing for x > a + ∆. When we add,
to A, a crisp number B = b (e.g., 1), we get a shifted membership function
which has a maximum x ∈ [ã − ∆, ã + ∆] (where ã

def= a + b), is increasing
for x < ã −∆ and decreasing for x > ã + ∆. In accordance with the above
interpretation, we thus interpret the sum A + B as “approximately ã”, i.e.,
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“approximately a + b”. Thus, the sum “≈ 100”+1 is equal not to ≈ 100 as
we would intuitively expect, but to ≈ 101.

Changing the shape of the membership function does not help. We must
therefore modify the operations of fuzzy arithmetic. How can we modify fuzzy
arithmetic to make sure that the desired property is satisfied, and the sum
of “≈ 100” and 1 is equal to ≈ 100?
Main idea. When we only know a (crisp of fuzzy) interval of possible values
of a certain quantity (or a more general set of possible values), it is desirable
to characterize this interval by supplying the user with the “simplest” element
from this interval, and by characterizing how far away from this value we can
get. For example, if, for some unknown physical quantity x, measurements
result in the interval [1.95, 2.1] of possible values, then, most probably, the
physicist will publish this result as y ≈ 2. Similarly, a natural representation
of the measurement result x ∈ [3.141592, 3.141593] is x ≈ π.

So, intuitively, if we know the membership functions for A and for B, we
should:

• compute the membership function µC(x) for C = A + B;
• find the interval of possible values of C (e.g., as all the values for which

µC(x) ≥ d0 for some value d0);
• pick the simplest value c on this interval, and then
• return “approximately c” as the result of adding A and B.

In particular, when A is “approximately 14,000,000” – meaning that the
interval of possible values is probably [13,500,000; 14,500,000] – and B is a
crisp value 5, then for A + B, the interval of possible values is [13,500,005;
14,500,005]. On this interval, 14,000,000 is probably still the simplest value,
so we conclude that the sum of “approximately 14,000,000” and 5 is – as we
expected – equal to “approximately 14,000,000”.

Similarly, in this new definition, if we add 1 kg to a weight of approxi-
mately 100 kg, we still get approximately 100 kg as the result.
How to formalize this definition? In order to formalize the above de-
finition, we must formalize what “simplest” means. Intuitively, the simpler
the description of a real number, the simpler this number. Thus, to define
relative complexity of different real numbers, we fix some logical theory T in
which we will describe real numbers.

We will consider languages in which the list of sorts S contains two sym-
bols: “integer” and “real”, and which contain standard arithmetic predicates
and function symbols such as 0, 1, +, −, ·, /, =, <, ≤, both for integers
and for reals. We will assume that this theory contains both the standard
first order theory of integers (Peano arithmetic [3,11,48]) and a standard first
order theory of real numbers [5,10,49,51]. One of the possibilities is to con-
sider, as the theory T , axiomatic set theory (e.g., ZF), together with explicit
definitions of integers, real numbers, and standard operations and predicates
in terms of set theory.
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Once a theory T is fixed, we can define a complexity D(x) of a real number
x as the shortest length of a formula F (y) in the language L which defines
this particular number x, i.e., which is true for y = x and false for y 6= x.

To clarify this definition, let us give examples of formulas which define
different real numbers:

• A formula (y · y = 1 + 1)& y ≥ 0 is true if and only if y =
√

2; thus, this
formula defines the number

√
2.

• Similarly, a formula ∀x (x · y = x + x + x) defines a real number 3.
• If the language of the theory T contains the sine function sin, and if the

corresponding theory contains the standard definition of the sine function,
then the formula sin(y) = 0 & 3 ≤ y ≤ 4 defines a real number π.

Comment 1. This definition is similar to the so-called Kolmogorov complex-
ity C(x) (invented independently by Chaitin, Kolmogorov, and Solomonoff),
which is defined as the smallest length of the program that computes x (for
a current survey of Kolmogorov complexity, see, e.g., [27]). In our case, how-
ever, we do not care that much about how to compute: computing 3.141592
may be easier than computing π; we are more interested in how easy it is
to describe x. Due to this difference, we cannot simply use the original Kol-
mogorov’s definition: we have to modify it.
Comment 2. It is worth mentioning that not all real numbers are definable:
indeed, there are only countably many formulas, so there can be no more
than countably many definable real numbers, while the total cardinality of
the set of all real numbers is known to be larger (ℵ1 > ℵ0).

This new definition solves the above problem, but – in full accordance
with the saying “there is no free lunch” – it comes with drawbacks. We will
see that these drawbacks do not mean that our solution is bad, they seem to
be implied (surprisingly) by the very properties that we try to retain.
First drawback: addition is no longer always associative. This draw-
back is the easiest to describe and to explain. Both standard arithmetic
and traditional fuzzy arithmetic are associative: if we add several numbers
A1 + . . . + An, the resulting sum does not depend on the order in which we
add them; in particular,

(. . . ((A1 + A2) + A3) + . . .) + An =

A1 + (A2 + (A3 + (. . . + An) . . .)). (16)

Let us show that for the newly defined addition, this formula is no longer
always true.

Indeed, suppose now that we want to formalize the idea that, say “≈ 100”
+ 1 is equal to ≈ 100 (this is just an example, but any other example can
be used to illustrate non-associativity). Let us take n = 101, “approximately
100” as A1, and A2 = . . . = An = 1 (crisp numbers). In terms of the newly
defined numbers Ai, the desired property takes the form A1 + A2 = A1
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(similarly, A1 +A3 = A1, etc.). Thus, A1 +A2 = A1, hence (A1 +A2)+A3 =
A1 + A3 = A1, etc., and hence the left-hand side of the formula (16) is equal
to “approximately 100”:

(. . . ((A1 + A2) + A3) + . . .) + An = A1. (17)

On the other hand, since A2, . . . , An are crisp numbers (equal to 1 each), their
sum A2 + (A3 + (. . . + An) . . .) is simply a crisp number 1 + . . . + 1 = 100.
Thus, the right-hand side of the formula (16) is equal to

“approximately 100” + 100

which, intuitively, should be rather “approximately 200” than “approximately
100”. Thus, the left-hand side of (16) is clearly different from its right-hand
side. Hence, the newly defined addition is not associative.
Second drawback: addition is no longer always easily computable.
Traditional fuzzy arithmetic – defined by the extension principle – provides
an explicit formula for computing the sum C = A+B of two fuzzy numbers A
and B. So, we can still find the interval of possible values for C. Unfortunately,
as we will now show, the next step – finding the simplest possible real number
on this interval – is no longer easily computable.

Theorem 3.1. (Kreinovich, Nguyen, and Pedrycz [22]) No algorithm is possi-
ble that, given an interval with definable endpoints, would return the simplest
real number from this interval.

A similar result holds for computable real numbers. A similar result
holds if we restrict ourselves to computable real numbers, i.e., real numbers
that can be computed with an arbitrary accuracy (see, e.g., [4,6,7,9]). To
be more precise, a real number x is called computable if there exists an
algorithm (program) that transforms an arbitrary integer k into a rational
number xk that is 2−k−close to x. It is said that this algorithm computes the
real number x.

Every computable real number is uniquely determined by the correspond-
ing algorithm and is, therefore, definable.

Theorem 3.2. (Kreinovich, Nguyen, and Pedrycz [22]) No algorithm is pos-
sible that, given an interval with computable endpoints, returns the simplest
computable real number from this interval.

Conclusion. From the commonsense viewpoint, if 5 years ago, a dinosaur
was approximately 14,000,000 years old, it is still approximately 14,000,000
years years old. Unfortunately, when we formalize the notion “approximately
14,000,000” in traditional fuzzy arithmetic, we do not get this property. In
this section, we have described a natural modification of fuzzy arithmetic
which does have this property. This modification is closer to commonsense
reasoning, but this closeness comes at a cost: addition is no longer always
associative and no longer always easily computable.
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4 Optimal Selection of Higher-Order Approach

Third order descriptions are not used: why? Theoretically, we can
define third, fourth order, etc., descriptions, but in practical applications,
only second order descriptions were used so far (see, e.g., [32,33,37,44]). Based
on this empirical fact, it is natural to conclude that third and higher order
descriptions are not really necessary. In this section, we will use the relation
with granularity to show that this empirical conclusion can be theoretically
justified.

First step in describing uncertainty: set of uncertainty-describing
words. Let us first describe the problem formally. An expert uses words
from a natural language to describe his degrees of certainty. In every lan-
guage, there are only finitely many words, so we have a finite set of words
(“granules”) that need to be interpreted. We will denote this set of words
by W .

Second step: a fuzzy property described by a word-valued “mem-
bership function”. If we have any property P on a universe of discourse
U , an expert can describe, for each element x ∈ U , his degree of certainty
d(x) ∈ W that the element x has the property P .

Traditional fuzzy logic as a first approximation: numbers assigned
to words describing uncertainty. Our ultimate goal is to provide a com-
puter representation for each word w ∈ W . In the traditional [0, 1]-based
description, this computer representation assigns, to every word, a real num-
ber from the interval [0, 1]; in general, we may have some other computer
representations (examples will be given later). Let us denote the set of all
possible computer representations by S.

In the first approximation, i.e., in the first order description, we represent
each word w ∈ W , which describes a degree of uncertainty, by an element
s ∈ S (e.g., by a real number from the interval [0, 1]). In this section, we
will denote this first-approximation computer representation of a word w by
s = ‖w‖.

If the set S is too small, then it may not contain enough elements to
distinguish between different expert’s degree of belief: this was exactly the
problem with classical {0, 1}-based description, in which we only have two
possible computer representations – “true” and “false” – that are not enough
to adequately describe the different degrees of certainty. We will therefore
assume that the set S is rich enough to represent different degrees of certainty.

In particular, the set [0, 1] contains infinitely many points, so it should
be sufficient; even if we only consider computer-representable real numbers,
there are still much more of them (millions and billions) than words in a
language (which is usually in hundreds of thousands at most), so we can safely
make this “richness” assumption. In mathematical terms, it means that two
different degrees of belief are represented by different computer terms, i.e.,
that if w1 6= w2, then ‖w1‖ 6= ‖w2‖.



Representation of Expert Knowledge by Fuzzy Logic 17

First approximation is not absolutely adequate. The problem with
the first-order representation is that the relation between words w ∈ W and
computer representation s ∈ S is, in reality, also imprecise. Typically, when
we have a word w ∈ W , we cannot pick a single corresponding representative
s ∈ S; instead, we may have several possible representatives, with different
degrees of adequacy.

Actual description of expert uncertainty: word-valued degree to
which a word describes uncertainty. In other words, instead of a single
value s = ‖w‖ assigned to a word w, we have several values s ∈ S, each with
its own degree of adequacy; this degree of adequacy can also be described by
an expert, who uses an appropriate word w ∈ W from the natural language.

In other words, for every word w ∈ W and for ever representation s ∈ S,
we have a degree w′ ∈ W describing to what extent s is adequate in repre-
senting w. Let us represent this degree of adequacy by a(w, s); the symbol a
represents a function a : W × S → W , i.e., a function that maps every pair
(w, s) into a new word a(w, s).

Second-order description of uncertainty as a second approximation
to actual uncertainty. So, the meaning of a word w ∈ W is represented
by a function a which assigns, to every element s ∈ S, a degree of adequacy
a(w, s) ∈ W . We want to represent this degree of adequacy in a computer;
therefore, instead of using the word a(w, s) itself, we will use the computer
representation ‖a(w, s)‖ of this word. Hence, we get a second-order repre-
sentation, in which a degree of certainty corresponding to a word w ∈ W is
represented not by a single element ‖w‖ ∈ S, but by a function µw : S → S,
a function which is defined as µw(s) = ‖a(w, s)‖.
Second-order description is not 100% adequate either; third-,
fourth-order descriptions, etc. The second-order representation is also
not absolutely adequate, because, to represent the degree a(w, s), we used
a single number ‖a(w, s)‖. To get a more adequate representation, instead
of this single value, we can use, for each element s′ ∈ S, a degree of ade-
quacy with which the element s′ represents the word a(w, s). This degree of
adequacy is also a word a(a(w, s), s′), so we can represent it by an appro-
priate element ‖a(a(w, s), s′)‖. Thus, we get a third-order representation, in
which to every element s, we assign a second-order representation. To get
an even more adequate representation, we can use fourth- and higher order
representations.

Let us express this scheme formally.

Definition 4.1.

• Let W be a finite set; element of this set will be called words.
• Let U be a set called a universe of discourse.
• By a fuzzy property P , we mean a mapping which maps each element

x ∈ U into a word P (x) ∈ W ; we say that this word described the degree
of certainty that x satisfies the property P .
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Definition 4.2. By a first-approximation uncertainty representation, we
mean a pair 〈S, ‖.‖〉, where:

• S is a set; elements of this set will be called computer representations;
and

• ‖.‖ is a function from W to S; we say that an element ‖w‖ ∈ S represents
the word w.

We say that an uncertainty representation is sufficiently rich if for every two
words w1, w2 ∈ W , w1 6= w2 implies ‖w1‖ 6= ‖w2‖.
Definition 4.3. Let W be a set of words, and let S be a set of computer
representations. By an adequacy function, we mean a function a : W×S → W ;
for each word w ∈ W , and for each representation s ∈ S, we say that a(w, s)
describes the degree to which the element s adequately describes the word w.

Definition 4.4. Let U be a universe of discourse, and let S be a set of
computer representations. For each n = 1, 2, . . ., we define the notions of n-
th order degree of certainty and of a n-th order fuzzy set, by the following
induction over n:

• By a first-order degree of certainty, we mean an element s ∈ S (i.e., the
set S1 of all first-order degrees of certainty is exactly S).

• For every n, by a n-th order fuzzy set, we mean a function µ : U → Sn

from the universe of discourse U to the set Sn of all n-th order degrees
of certainty.

• For every n > 1, by a n-th order degree of certainty, we mean a function
sn which maps every value s ∈ S into an (n − 1)-th order degree of
certainty (i.e., a function sn : S → Sn−1).

Definition 4.5. Let W be a set of words, let 〈S, ‖.‖〉 be an uncertainty
representation, and let a be an adequacy function. For every n > 1, and for
every word w ∈ W , we define the n-th order degree of uncertainty ‖w‖a,n ∈ Sn

corresponding to the word w as follows:

• As a first order degree of uncertainty ‖w‖a,1 corresponding to the word
w, we simply take ‖w‖a,1 = ‖w‖.

• If we have already defined degrees of orders 1, . . . , n− 1, then, as an n-th
order degree of uncertainty ‖w‖a,n ∈ Sn corresponding to the word w,
we take a function sn which maps every value s ∈ S into a (n − 1)-th
order degree ‖a(w, s)‖a,n−1.

Definition 4.6. Let W be a set of words, let 〈S, ‖.‖〉 be an uncertainty
representation, let a be an adequacy function, and let P be a fuzzy property
on a universe of discourse P . Then, by a n-th order fuzzy set (or a n-th order
membership function) µ

(n)
P,a(x) corresponding to P , we mean a function which

maps every value x ∈ U into an n-th order degree of certainty ‖P (x)‖a,n

which corresponds to the word P (x) ∈ W .
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We will prove that for properties which are non-degenerate in some rea-
sonable sense, it is sufficient to know the first and second order membership
functions, and then the others can be uniquely reconstructed. Moreover, if
we know the membership functions of first two orders for a non-degenerate
class of fuzzy properties, then we will be able to reconstruct the higher order
membership functions for all fuzzy properties from this class.
Definition 4.7.

• We say that a fuzzy property P on a universe of discourse U is non-
degenerate if for every w ∈ W , there exists an element x ∈ U for which
P (x) = w.

• We say that a class P of fuzzy properties P on a universe of discourse U
is non-degenerate if for every w ∈ W , there exists a property P ∈ P and
an element x ∈ U for which P (x) = w.

Comment. For example, if W 6= {0, 1}, then every crisp property, i.e., every
property for which P (x) ∈ {0, 1} for all x, is not non-degenerate (i.e., degen-
erate).

Theorem 4.1. (Nguyen and Kreinovich [21,39]) Let W be a set of words, let
〈S, ‖.‖〉 be a sufficiently rich uncertainty representation, let U be a universe
of discourse. Let P and P ′ be fuzzy properties, so that P is non-degenerate,
and let a and a′ be adequacy functions. Then, from µ

(1)
P,a = µ

(1)
P ′,a′ and µ

(2)
P,a =

µ
(2)
P ′,a′ , we can conclude that µ

(n)
P,a = µ

(n)
P ′,a′ for all n.

Comments.

• In other words, under reasonable assumptions, for each property, the
information contained in the first and second order fuzzy sets is sufficient
to reconstruct all higher order fuzzy sets as well; therefore, in a computer
representation, it is sufficient to keep only first and second order fuzzy
sets.

• This result is somewhat similar to the well-known result that a Gaussian
distribution can be uniquely determined by its moments of first and sec-
ond orders, and all higher order moments can be uniquely reconstructed
from the moments of the first two orders.

• It is possible to show that the non-degeneracy condition is needed, be-
cause if a property P is not non-degenerate, then there exist adequacy
functions a 6= a′ for which µ

(1)
P,a = µ

(1)
P,a′ and µ

(2)
P,a = µ

(2)
P,a′ , but µ

(3)
P,a 6= µ

(3)
P,a′

already for n = 3.

Theorem 4.2. (Nguyen and Kreinovich [21]) Let W be a set of words, let
〈S, ‖.‖〉 be a sufficiently rich uncertainty representation, let U be a universe
of discourse. Let P and P ′ be classes of fuzzy properties, so that the class P
is non-degenerate, and let ϕ : P → P ′ be a 1-1-transformation, and let a and
a′ be adequacy functions. Then, if for every P ∈ P, we have µ

(1)
P,a = µ

(1)
ϕ(P ),a′

and µ
(2)
P,a = µ

(2)
ϕ(P ),a′ , we can conclude that µ

(n)
P,a = µ

(n)
ϕ(P ),a′ for all n.
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Comment. So, even if we do not know the adequacy function (and we do
not know the corresponding fuzzy properties P ∈ P), we can still uniquely
reconstruct fuzzy sets of all orders which correspond to all fuzzy properties P .

5 Operations Which are Consistent both with
Granularity and Higher-Order Logics: Preliminary
Results

Why only unary and binary operations? Traditionally, in logic, only
unary and binary operations are used as basic ones – e.g., “not”, “and”, “or”
– while the only ternary (and higher order) operations are the operations
which come from a combination of unary and binary ones.

A natural question is: are such combinations sufficient? I.e., to be more
precise, can an arbitrary logical operation be represented as a combination of
unary and binary ones?

For the classical logic, with the binary set of truth values V = {0, 1}
(={false, true}), the positive answer to this question is well known. Indeed, it
is known that an arbitrary logical operation f : V n → V can be represented,
e.g., in DNF form and thus, it can indeed be represented as a combination
of unary (“not”) and binary (“and” and “or”) operations.

We are interested in explaining why unary and binary logical operations
are the only basic ones. If we assume that the logic of human reasoning is
the two-valued (classical) logic, then the possibility to transform every logical
function into a DNF form explains this empirical fact.

In the traditional fuzzy logic, the set of truth values is the entire interval
V = [0, 1]. This interval has a natural notion of continuity, so it is natural to
restrict ourselves to continuous unary and binary operations.

With this restriction in place, a natural question is: can an arbitrary
continuous function f : [0, 1]n → [0, 1] be represented as a composition of
continuous unary and binary operations? The positive answer to this question
was obtained in our papers [38,42].

We have already mentioned, in the introduction, that the traditional fuzzy
logic is not 100% adequate in describing expert reasoning, we need to modify
it. In modifications motivated by granularity, we have a finite-valued logic V ,
in which V is a finite set. In interval-values and other higher-order modifica-
tions, we get a multi-D fuzzy logic.

In mathematical terms, V be a closure of a simply connected bounded
open set in Rm, m > 1 (e.g., of a convex set). For example, for interval-
valued fuzzy sets,

V = {(a, b) | 0 ≤ a ≤ b ≤ 1}. (18)

Uncertainty of expert estimates is only one reason why we may want to
go beyond the traditional [0, 1]-valued logic; there are also other reasons:
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• A 1-D value is a reasonable way of describing the uncertainty of a sin-
gle expert. However, the confidence strongly depends on the consensus
between different experts. We may want to use additional dimensions
to describe how many expert share the original expert’s opinion, and to
what degree; see, e.g., [25,43].

• Different experts may strongly disagree. To describe the degree of this
disagreement, we also need additional numerical characteristics, which
make the resulting logic multi-D; see, e.g., [41].

In all these cases, we need a multi-D logic to adequately describe expert’s
degree of confidence.

Natural questions are:

• Can every operation on a finite fuzzy logic be represented as a composi-
tion of unary and and binary operations?

• Can every (continuous) operation on a multi-D fuzzy logic be represented
as a composition of (continuous) unary and and binary operations?

In this section, we show that both for finite-valued logics and for multi-D
logics, every logical operation can be represented as a composition of unary
and binary operations. Thus, we give a general explanation for the above
empirical fact.

Theorem 5.1. (Nguyen, Kreinovich, and Goodman [40]) For every finite set
V , and for every positive integer n, every n-ary operation f : V n → V can
be represented as a composition of unary and binary operations.

Theorem 5.2. (Nguyen, Kreinovich, and Goodman [40]) For every multi-D
set of truth values V , and for every positive integer n, every continuous n-
ary operation f : V n → V can be represented as a composition of continuous
unary and binary operations.

This result is based on the following known result:

Theorem. (Kolmogorov [20]) Every continuous function of three or more
variables can be represented as a composition of continuous functions of one
or two variables.

This result was proven by A. N. Kolmogorov as a solution to the conjecture
of Hilbert, formulated as the thirteenth problem [16]: one of 22 problems that
Hilbert has proposed in 1900 as a challenge to the 20 century mathematics.

This problem can be traced to the Babylonians, who found (see, e.g.,
[8]) that the solutions x of quadratic equations ax2 + bx + c = 0 (viewed as
function of three variables a, b, and c) can be represented as superpositions of
functions of one and two variables, namely, arithmetic operations and square
roots. Much later, similar results were obtained for functions of five variables
a, b, c, d, e, that represent the solution of quartic equations ax4 +bx3 +cx2 +
dx + e = 0. But then, Galois proved in 1830 that for higher order equations,
we cannot have such a representation. This negative result has caused Hilbert
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to conjecture that not all functions of several variables can be represented
by functions of two or fewer variables. Hilbert’s conjecture was refuted by
Kolmogorov (see, e.g., [29], Chapter 11) and his student V. Arnold.

It is worth mentioning that Kolmogorov’s result is not only of the-
oretical value: it was used to speed up actual computations (see, e.g.,
[12,14,23,24,34,35]).

It turns out that one can generalize Kolmogorov’s theorem and prove that
a similar representation holds for multi-D logics as well.

Conclusion. Traditionally, in logic, only unary and binary operations are
used as basic ones. In traditional (2-valued) logic, the use of only unary
and binary operations is justified by the known possibility to represent an
arbitrary n-ary logical operation as a composition of unary and binary ones. A
similar representation result is true for the [0, 1]-based fuzzy logic. However,
the [0, 1]-based fuzzy logic is only an approximation to the actual human
reasoning about uncertainty. A more accurate description of human reasoning
requires that we take into consideration the uncertainty with which we know
the values from the interval [0, 1]. This additional uncertainty leads to two
modifications of the [0, 1]-based fuzzy logic: finite-valued logic and multi-D
logic.

We show that for both modifications, an arbitrary n-ary logical operation
can be represented as a composition of unary and binary ones. Thus, the
above justification for using only unary and binary logical operation as basic
ones is still valid if we take interval uncertainty into consideration.

6 Conclusions

Fuzzy logic is a natural way to incorporate expert knowledge into an intel-
ligent system. Traditional [0, 1]-based fuzzy logic has led to many successful
applications, but in several aspects, the resulting computer representation is
somewhat different from the original expert meaning. Two related approaches
have been used to make fuzzy logic more adequate in representing expert rea-
soning: granularity and higher-order approaches. Each approach is successful
in some applications where the other approach did not succeed so well; it is
therefore desirable to combine these two approaches. This idea of combining
the two approaches is very natural, but so far, it has led to few successful
practical applications.

In this chapter, we provide results aimed at finding a better (ideally op-
timal) way of combining these approaches. Specifically:

• we show, on some reasonable examples, what is the optimal granularity;
• we handle the problem of selecting operations that are in optimal agree-

ment with the granularity;
• we use the common origin of granularity and higher-order logics to find

out which of the higher-order approaches is optimal;
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• finally, we provide preliminary results about operations which are consis-
tent both with granularity and higher-order logics.
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d’Investigació en Intelligènicia Artificial, Spain.

48. Schoenfield, J. R. (1967) Mathematical Logic, Addison-Wesley.
49. Seidenberg, A. (1954) A new decision method for elementary algebra. Annals

of Math. 60 365–374.
50. Shafer, G., Pearl, J., eds. (1990) Readings in Uncertain Reasoning, M. Kauf-

mann, San Mateo, CA.
51. Tarski, A. (1948) A Decision Method for Elementary Algebra and Geometry,

University of California Press, Berkeley.
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