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Abstract. Some photos of the 2001 World Trade Center fire reveal a “face”
in the smoke which was interpreted, by some people, as the face of Satan.
Most journalists believe, however, that the visible smoke configuration can
be explained by natural processes, and that the visible “face” is similar to
animal shapes that are sometimes observed in the clouds. In this paper,
we present a simple geometric analysis that supports this natural-process
explanation.

Observation. Some photos of the 2001 World Trade Center fire reveal a
face-like image which some people interpret as a face of Satan. Actually,
there are two unaltered images of this type: a image found in the CNN TV
feed, and an image made by a freelance photographer who distributed his
photo via Associated Press (AP); see, e.g., [Philadelphia 2001], [Benedetti
2001].

Both images consist of four almost straight line segments on a conic sur-
face. In the CNN image, the “face” is formed by three horizontal lines and
one vertical one looking like this:
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In the AP image, there are similar four lines (somewhat slanted). It is worth
mentioning that neither the TV cameramen nor the photographer observed
the image when they were taking pictures, the face-like image was only
observed later.



Physical background for geometric analysis. 1. In this paper, we analyze
the observed “face” by performing a geometric analysis of possible smoke
shapes. To perform such analysis, we will consider the physics of this pro-
cess, and show that this physics leads to reasonable conclusions about the
geometry of smoke shapes.

According to the famous Felix Klein’s Erlangen program, geometry is
a study of symmetries [Klein 1893]. In view of this idea, to describe the
geometric shapes, we do not need to know the exact physical equations, it
Is sufficient to know what are the symmetries of the corresponding physi-
cal processes. This approach has worked perfectly well in many geometric
shapes ranging from crystallography (see, e.g., [Yale 1988]) to shapes of
celestial bodies ([Finkelstein et al. 1997], [Finkelstein et al. 1997a]), and
we will show that it works for smoke shapes as well.

Strictly speaking, since the landscape does not have any exact symmet-
ric, the processes are not exactly symmetric. However, within a reasonable
approximation, these processes can be viewed as symmetric.

First, from the large-scale viewpoint, we can view the high vertical build-
ing as a vertical line £. A vertical line is invariant w.r.t. rotations around
this line. This physically reasonable approximation enables us to conclude
that the corresponding physical processes should be invariant w.r.t. rotations
around this line.

Second, the equations that describe the fire process contain several char-
acteristic lengths. When the fire is huge, it is reasonable to expect that the
actual size of this fire is much larger than these lengths. Thus, from the
physical viewpoint, we can ignore these lengths and, thus, assume that the
process is scale-invariant. This assumption is normal in physics. For exam-
ple, for high-energy particles, for which the energy E' is much larger than
the rest energy mg - ¢, it is reasonable to ignore mg - ¢ and thus, con-
sider such particles as similar to particles with rest mass zero mgy = 0 (like
photons). Indeed, high-energy particles possess many properties similar to
zero-mass ones like photons: e.g., the high-energy particles travel with a ve-
locity which is very close to the speed of light. Similarly, when we analyze
large-scale phenomena that lead to observable geometric shapes of celes-
tial bodies, we can ignore the characteristic lengths and assume that all the
involved processes are scale-invariant.

Third, the processes are invariant with respect to “mirror” reflections, i.e.,
reflections across the any plane which contains the central vertical line ¢ (the
line that represents the building).

Let us see with what shape we end up by using these symmetries.



Background shape. We have a central point P (where the fire started),
and we have physical processes that are invariant w.r.t. rotations around the
corresponding central vertical axis, homotheties ¥ — X - ¥ with the center at
this point P, and mirror reflections. The geometric shape resulting to these
processes should therefore be invariant w.r.t. these rotations, homotheties,
and reflections.

If we take any point () # P from this shape, then, due to rotation invari-
ance, this shape should contain the entire horizontal circle of points with
the same distance d(P, @), and due to scale-invariance, this shape should
contain the homotheties of all such circles — i.e., the vertical cone with the
point P as a vertex. Each such cone is invariant w.r.t. reflections.

Thus, the above symmetries explain why the main (background) shape is
the shape of the cone.

Comment. It should be mentioned that a cone is an unbounded figure; in
reality, of course, we observe only a bounded process, so what we observe
Is not the entire infinite cone, but its finite fragment.

Physical background for geometric analysis. 2. Let us now provide the
physical explanations for the lines on the cone.

A cone corresponds to an ideal process which is highly symmetric with
respect to homotheties and rotations. A real-life fire is a high-temperature
process, and high temperature means strong thermal fluctuations. Fluctua-
tions are, by nature, random, so they violate the original symmetry.

In principle, it is possible to have a fluctuation-based perturbation that
changes the initial highly symmetric state into a state with no symmetries at
all, but statistical physics teaches us that it is much more probable to have
a gradual symmetry violation: first, some of the symmetries are violated,
while some still remain; then, some other symmetries are violated, etc. Sim-
ilarly, a (highly organized) solid body normally goes through a (somewhat
organized) liquid phase before it reaches a (completely disorganized) gas
phase.

Thus, from the viewpoint of statistical physics, it is more probable to ex-
pect perturbations that are invariant w.r.t. some subgroup G’ of the initial
group G. If a perturbation changes the process at some point a, then, due
to invariance, for every transformation ¢ € G’, we will observe a similar
change at the point g(a). Therefore, the shape of the resulting change con-
tains, with every point a, the entire orbit G'a = {g(a)|g € G’} of the
group G’. Hence, the resulting shape consists of one or several orbits of a
group G'.



The features on the background: geometric analysis. Let us apply the
above general description to our case. In our case, we have a 2-D group G
generated by rotations and homotheties. Crudely speaking, a general 1-D
subgroup G’ can be obtained if we take a single infinitesimal element from
G (i.e., strictly speaking, from the Lie algebra of all infinitesimal transfor-
mations from @), and take a subgroup generated by G’. An infinitesimal
transformation consists of a rotation by an infinitesimally small angle df
and a homothety 77 — (1 4+ d\) - ¥ with an infinitesimally small d\. The
orbit of the resulting group is a conic spiral that is described (in cylindrical
coordinates) by the equations z = k - pand p = Ry - exp(c - ), Where:

e 2 is a vertical coordinate;

e p is the distance between the given point 7" and the central vertical line
¢/; and

e ¢ is the angle between the direction P () from P to the horizontal
projection () of the point #and some fixed direction.

A conic spiral is a general shape. There are two degenerate limit cases of a
conic spiral:

¢ a horizontal circle (corresponding to ¢ = 0), and

e a generatrix of a cone, i.e., a straight line on the surface of the cone
passing through the cone’s vertex (corresponding to ¢ — o).

Therefore, in general, we have perturbations which show up as conic spirals,
circles, or straight lines on the surface of the cone.

A general conic spiral is unbounded, so, of course, similar to the fact that
we observe only a fragment of the cone, we only observe a fragment of the
conic spiral.

In the above derivation, we did not take into consideration mirror reflec-
tions. These reflections affect the resulting shape because the more sym-
metries are preserved, the more probable the shape. A general conic spiral
Is not invariant under any reflection. The only two cases of a conic spiral
which are invariant under some reflections are the two above degenerate
cases:

¢ a horizontal circle is invariant under an arbitrary mirror reflection (to be
more precise, under a reflection across an arbitrary plane containing the
central vertical line ¢);

e a straight line passing through the cone’s vertex is only invariant under
one specific mirror reflection: reflection across the plane formed by this
generatrix and the central vertical line 2.



Thus, we arrive at the following conclusion:

The features on the background: conclusion and comparison with ob-
servations. The conclusion from the above analysis is that:

e the most probable shape is a horizontal circle;

e a somewhat less probable shape is a straight line passing through the
cone’s vertex; and

e the least probable shape is a general conic spiral.

This conclusion is in good accordance with the fact that in the observed
picture, we have:

e three fragments of horizontal circles,
e asingle fragment of a straight line passing through the vertex, and

¢ no fragments resembling generic conic spirals.

General conclusion. In this text, we showed that both the background shape
(the cone) and the features on this background (horizontal and vertical lines)
can be explained by our geometric analysis.

Thus, the observed face-like shape can be naturally explained by the physics
and geometry of fire.

Open problem. In the above text, we provided a geometric explanation
of the shapes, and a qualitative explanation of the relative frequency of
different shapes. It would be great to have a geometry-based quantitative
explanation of such relative frequencies.
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