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Abstract— In 1951, K. J. Arrow proved that, under certain
assumptions, it is impossible to have group decision making
rules which satisfy reasonable conditions like symmetry. This
Impossibility Theorem is often cited as a proof that reasonable
group decision making is impossible.

We start our paper by remarking that Arrow’s result only
covers the situations when the only information we have about
individual preferences is their binary preferences between the
alternatives. If we follow the main ideas of modern decision
making and game theory and also collect information about the
preferences between lotteries (i.e., collect the utility values of
different alternatives), then reasonable decision making rules are
possible: e.g., Nash’s rule in which we select an alternative for
which the product of utilities is the largest possible.

We also deal with two related issues: how we can detect indi-
vidual preferences if all we have is preferences of a subgroup, and
how we take into account mutual attraction between participants.

I. GROUP DECISION MAKING AND ARROW’S
IMPOSSIBILITY THEOREM

In 1951, Kenneth J. Arrow published his famous result about
group decision making [1], a result that became one of the
main reasons for his 1972 Nobel Prize; see also [16], [22],
[23], [34].

The problem. Arrow’s result deals with the following setting.
A group of n participants P1, . . . , Pn needs to select between
one of m alternatives A1, . . . , Am. To find individual prefer-
ences, we ask each participant Pi to rank the alternatives Aj

from the most desirable to the least desirable:

Aj1 ≻i Aj2 ≻i . . . ≻i Ajn .

Based on these n rankings, we must form a single group
ranking (in the group ranking, equivalence ∼ is allowed).

Case of two alternatives is easy. In the simplest case when
we have only two alternatives A1 and A2, each participant
either prefers A1 or prefers A2. In this case, it is reasonable,
for a group:

• to prefer A1 if the majority prefers A1,
• to prefer A2 if the majority prefers A2, and

• to claim A1 and A2 to be of equal quality for the group
(denoted A1 ∼ A2) if there is a tie.

Case of three or more alternatives is not easy. When we
have three or more alternatives, there is no such simple rule;
to be more precise, we can still come up with many possible
group decision rules, but all these rules will be, in some sense,
counter-intuitive.

Arrow’s result. Arrow has explicitly formulated several rea-
sonable conditions and showed that no group decision rule
can satisfy all these conditions. Arrow’s conditions are very
straightforward and very natural.

The first is the Pareto condition: that if all participants prefer
Aj to Ak, then the group should also prefer Aj to Ak.

The second condition is Independence from Irrelevant Alter-
natives: the group ranking between Aj and Ak should depend
only on how participants rank Aj and Ak – and should not
depend on how they rank other alternatives.

Arrow has shown that every group decision rule which
satisfies these two condition is a dictatorship rule – the
rule according to which the group accepts the preferences
of one of the participants as the group decision and ignores
the preferences of all other participants. This clearly violates
another reasonable condition of symmetry: that the group
decision rules should not depend on the order in which we
list the participants.

II. BEYOND ARROW’S IMPOSSIBILITY THEOREM: NASH’S
BARGAINING SOLUTION

It is sometimes claimed that reasonable group decision
making is impossible. Arrow’s Impossibility Theorem is often
cited as a proof that reasonable group decision making is
impossible – e.g., that a perfect voting procedure is impossible;
see, e.g., [34].

Arrow’s result is only valid if we have binary (partial)
information about individual preferences. We will see that
the pessimistic interpretation of Arrow’s result is, well, too
pessimistic.



Indeed, Arrow’s result assumes that the only information
we have about individual preferences is their binary (“yes”-
“no”) preferences between the alternatives. This information
does not fully describe a persons’ preferences: e.g., the same
preference A1 ≻ A2 ≻ A3 may indicate that a person strongly
prefers A1 to A2, and A2 to A3, and it may also indicate that
this person strongly prefers A1 to A2, and at the same time,
A2 is almost of the same quality as A3.

To describe this degree of preference, researchers in deci-
sion making use the notion of utility; see, e.g., [22], [23].

What is utility: a reminder. A person’s rational decisions
are based on the relative values to the person of different out-
comes. In financial applications, the value is usually measured
in monetary units such as dollars. However, the same monetary
amount may have different values for different people: e.g., a
single dollar is likely to have more value to a poor person
than to a rich one. In view of this difference, in decision
theory, to describe the relative values of different outcomes,
researchers use a special utility scale instead of the more
traditional monetary scales.

There are many different ways to elicit utility from decision
makers. A common approach is based on preferences of a
decision maker among lotteries. A simple way to define a
lottery is as follows. Take a very undesirable outcome A− and
a very desirable outcome A+, and then consider the lottery
A(p) in which we get A+ with probability p and A− with
probability 1 − p (p is given and is usually understood as
an “objective” probability). Clearly, the larger p, the more
preferable A(p): p < p′ implies A(p) < A(p′). Traditional de-
cision theory is based on assumptions concerning preferences
over lotteries. For example, the following two assumptions are
usually adopted as axioms:

• the comparison amongst lotteries is a linear order – i.e.,
a person can always select one of the two alternatives,
and

• the comparison is Archimedean – i.e. if for all ε > 0,
an outcome B is better than A(p − ε) and worse than
A(p+ε), then it is of the same quality as A(p): B ∼ A(p)
(where A ∼ B means that A and B are of the same
quality).

Because of our selection of A− and A+, most reasonable
outcomes are better than A− = A(0) and worse than A+ =
A(1). Due to linearity, for every p, either A(p) < B, or
B ∼ A(p), or B < A(p). If we define the utility of outcome
B as u(B)

def
= sup{p |A(p) < B}, we have A(u(B)−ε) < B

and A(u(B)+ε) > B; thus, due to the Archimedean property,
we have A(u(B)) ∼ B. This value u(B) is called the utility
of the outcome B.

As defined above utility always takes values within the
interval [0, 1]. It is also possible to define utility to take
values within other intervals. Indeed, note that the numerical
value u(B) of the utility depends on the choice of reference
outcomes A− and A+. If we select a different pair of reference
outcomes, then the resulting numerical utility value u′(B)
is different. The usual axioms of utility theory guarantee

that two utility functions u(B) and u′(B) corresponding to
different choices of the reference pair are related by a linear
transformation: u′(B) = a · u(B) + b for some real numbers
a > 0 and b. By using appropriate values a and b, we can
then re-scale utilities to make the scale more convenient (e.g.
in financial applications, closer to the monetary scale).

Expected utility. Often, we have a “branching” situation
involving n incompatible events E1, . . . , En with probabilities
p1, . . . , pn such that exactly one of them will occur. E.g. coins
can fall heads or tails, dice can show 1 to 6, etc. In such
situations, for every n outcomes B1, . . . , Bn, we can form a
lottery by assigning outcome Bi if event Ei occurs. If we know
the utility ui = u(Bi) of each outcome Bi, and we know the
probability pi = P (Ei) of each event Ei, then the utility of
the corresponding lottery may be determined as follows.

We know the probability pi of each event Ei. Thus, the
lottery “Bi if Ei” is equivalent to the lottery in which we get
Bi with probability pi. The fact that u(Bi) = ui means that
each Bi is equivalent to getting A+ with probability ui and
A− with probability 1 − ui. By replacing each Bi with this
new “lottery”, we conclude that the lottery “if Ei then Bi” is
equivalent to a two-step lottery in which we:

• first select Ei with probability pi, and
• then, for each i, select A+ with probability ui and A−

with the probability 1− ui.
In this two-step lottery, the probability of getting A+ is equal
to p1·u1+. . .+pn·un (often this is obtained by adding suitable
axioms on combination of lotteries, but the meaning should
be intuitive here). Thus, by our definition of utility, the utility

of the lottery “if Ei then Bi” is equal to u =
n∑

i=1

pi · ui =

n∑
i=1

p(Ei) · u(Bi). In mathematical terms, u is the expected

value of the utility, so this approach is often called the expected
utility approach.

In the traditional approach, between several alternatives we
select the one with the largest utility u, hence the one with
the largest value of the expected utility.

Nash’s bargaining solution. So, for each participant Pi,
instead of knowing this participants’ preferences, we can
determine the utility uij

def
= ui(Aj) of all the alternatives

A1, . . . , Am. Once we know such utilities, we can ask the
same question: how to transform these known utilities into a
reasonable group decision rule?

The answer to this question was, in effect, provided by
another future Nobelist John Nash who, in his 1950 paper [24],
has shown that under reasonable assumptions like symmetry,
independence from irrelevant alternatives, and scale invariance
(i.e., invariance under replacing the original utility function
ui(A) with an equivalent function a · ui(A)), the only group
decision rule is selecting an alternative A for which the product
n∏

i=1

ui(A) is the largest possible.

Here, the utility functions must be scaled in such a way that
the “status quo” situation A(0) is assigned the utility 0. This re-



scaling can be achieved, e.g., by replacing the original utility
values ui(A) with re-scaled values u′

i(A)
def
= ui(A)−ui(A

(0)).
For a more detailed discussion on Nash’s bargaining solu-

tion and its application to group decision making, see, e.g.,
[18], [22], [23], [26].

It is easy to see that the Pareto condition and Independence
condition are both satisfied for Nash’s solution. Let us start
with the Pareto condition. If all participants prefer Aj to
Ak, this means that ui(Aj) > uj(Ak) for every i, hence
n∏

i=1

ui(Aj) >
n∏

i=1

ui(Ak) – which means that the group would

prefer Aj to Ak.
The Independence condition is even easier to check: accord-

ing to Nash’s solution, we prefer Aj to Ak if
n∏

i=1

ui(Aj) >

n∏
i=1

ui(Ak). From this formula, once can easily see that the

group ranking between Aj and Ak depends only on how
participants rank Aj and Ak – and does not depend on how
they rank other alternatives.

Comment. Nash’s solution can be easily explained in terms of
fuzzy logic (see, e.g., [17], [29]: We want all participants to
be happy, so we want the first participant to be happy and
the second participant to be happy, etc. We can take u1(A)
as the “degree of happiness” of the first participant, u2(A) as
the “degree of happiness” of the second participant, etc. If, in
order to formalize “and”, we use the operation d · d′ (one of
the two operations originally proposed by L. Zadeh to describe
“and”), then the degree to which all n participants are satisfied
is equal to the product u1(A)·u2(A)·. . .·un(A). So, if we look
for the alternative which leads to the largest possible degree
of mutual satisfaction, then we must look for the alternative
A for which the product u1(A) ·u2(A) · . . . ·un(A) attains the
largest possible value.

Potential applications. This idea can be applied to various
problems ranging from global problems such as the division
of a disputed territory [19], [20], [26] to more down-to-
Earth problems such as dividing a cake (or, in general, an
inheritance). Many ingenious decisions of this problems are
known; see, e.g., [7], [8], [12], [13], [31]; our point is that
Nash’s solution can work as well.

III. HOW WE CAN DETERMINE UTILITIES

It is easy to determine, for each participants Pi, his or her
utility uij for a given alternative Aj (with a given accuracy
2−k). For example, we can use the iterative bisection method
in which, at every step, we have an interval [u, u] that is
guaranteed to contain the actual (unknown) value of the utility
u.

As we have mentioned, in the standard scale, u ∈ [0, 1], so
we can start with the interval [u, u] = [0, 1].

At each iteration, once we have an interval [u, u] that
contains u, we compute its midpoint umid

def
= (u + u)/2

and compare the alternative Aj with the lottery “A+ with

probability umid, otherwise A−”. Depending on the result of
this comparison, we can now halve the interval [u, u]:

• If, for the participant, the alternative Aj is better than this
lottery, then we know that u ∈ [umid, u], so we have a
new interval [umid, u] of half-width which is guaranteed
to contain u.

• If, for the participant, the alternative Aj is worse than this
lottery, then we know that u ∈ [u, umid], so we have a
new interval [u, umid] of half-width which is guaranteed
to contain u.

After each iteration, we decrease the width of the interval
[u, u] by half. Thus, after k iterations, we get an interval of
width 2−k which contains the actual value u – i.e., we have
determined u with the accuracy 2−k.

IV. WHAT IS THE GUARANTEE THAT PARTICIPANTS WILL
PROVIDE CORRECT UTILITY VALUES?

Problem: sometimes it is beneficial to cheat. The above
description relies on the fact that we can elicit true prefer-
ences (and hence, true utility functions) from the participants.
However, sometimes, it is beneficial for a participant to cheat
and provide false utility values.

For example, if a participant P1 know the utilities of all
the other participants, then it is sometimes advantageous to
supply false utility values. Indeed, an ideal situation for P1 is
when, out of m alternatives A1, . . . , Am, the group as a whole
selects an alternative Am1 which is the best for P1, i.e, for
which u1(Am1) ≥ u1(Aj) for all j ̸= m1.

It is not necessarily true that the product
n∏

i=1

ui(Aj) com-

puted based on P1’s true utility is the largest for the alternative
Am1 . However, we can force this product to attain the maxi-
mum for Am1 if we report, e.g., a “fake” utility function u′

1(A)
for which u′

1(Am1) = 1 and u′
1(Aj) = 0 for all j ̸= m1.

In case of uncertainty, cheating may hurt the cheater:
an observation. In practice, we rarely encounter a situation
in which one person is familiar with the preferences of
all the others while others have no information about this
person’s preferences. Usually, if other participants have no
information about this person’s preferences, then this person
has no information about the preferences of the others as well.

In this case, cheating may be disadvantageous. For example,
if we report the above false utility function, then if others have
similar utility functions with ui(Ami) > 0 for some mi ̸= m1

and ui(Aj) = 0 for all other j, then for every alternative
Aj , Nash’s product is equal to 0. From this viewpoint, all
alternatives are equally good, so each of them can be chosen.
In particular, it may be possible that the group selects an
alternative Aq which is the worst for P1 – i.e., for which
u1(Aq) < u1(Aj) for all j ̸= p.

On the other hand, by reporting the actual utility function,
P1 may lead to the selection of an alternative Ak which is
better than Aq.

So, in this example, by reporting a false utility function
u′
1(Aj) instead of the correct one u1(Aj), the participant P1



may hurt himself by reducing his payoff from u1(Ak) to
u1(Aq) < u1(Ak).

Territorial division problem: a reminder. Let us show that
in the reasonable case of dividing the territory, it is beneficial
to report the correct utility values.

Comment. This result was partly announced in [19], [20].

In this case [26], we have a set A to divide. Here, each
alternative corresponds to a partition of the set A into n subsets

X1, . . . , Xn such that
n∪

i=1

Xi = A and Xi ∩ Xj = ∅ when

i ̸= j. The utility functions have the form ui(X) =
∫
X
vi(t) dt

for given functions vi(t) from the set A to the set of non-
negative real numbers. Based on the utility functions vi(t), we
find a partition X1, . . . , Xn for which Nash’s product u1(X) ·
. . . · un(Xn) attains the largest possible value.

Without losing generality, let us concentrate on the actions
of the first participant P1. Let us assume that v1(t) is the
actual utility function of this participant. The participant P1

can either report his/her actual function v1(t), or he/she can
report a different utility function v′1(t) ̸= v1(t). For each
reported function v′1(t), we can find the partition X1, . . . , Xn

that maximizes the corresponding product(∫
X1

v′1(t) dt

)
·
(∫

X2

v2(t) dt

)
· . . . ·

(∫
Xn

vn(t) dt

)
.

As a result, the participant P1 gets the set X1, so its actual
utility is equal to

∫
X1

v1(t) dt. Let us denote this actual utility
by u(v′1, v1, v2, . . . , vn).

The question is: which utility function v′1(t) should
the participant P1 report in order to maximize his gain
u(v′1, v1, v2, . . . , vn)? We assume that we do not know the
utility functions v2(t), . . . , vn(t) of other participants. For
different vi(t), different selections v′1(t) may lead to better
gain for P1.

Decision making under uncertainty: a reminder. The sit-
uation of decision making under uncertainty is typical in
decision making; see, e.g., [22]. There are several known
approaches to solving a general problem of decision making
under uncertainty.

We can choose an optimistic approach in which, for each
action A, we only consider its most optimistic outcome, with
the largest possible gain u+(A) – and choose an action for
which this luckiest outcome is the largest.

Alternatively, we can choose a pessimistic approach in
which, for each action A, we only consider its most pessimistic
outcome, with the smallest possible gain u−(A) – and choose
an action for which this worst-case outcome is the largest.

Realistically, both approaches appear to be too extreme.
In real life, it is more reasonable to use, as an objective
function, a combination of pessimistic and optimistic cases.
Such a combined pessimism-optimism criterion was originally
proposed in [15]: namely, we choose a real number α ∈ [0, 1],
and choose an alternative A for which the combination

u(A) = α · u−(A) + (1− α) · u+(A)

takes the largest possible value.
Pessimism corresponds to α = 1, optimistic corresponds to

α = 0, realistic approaches correspond to α ∈ (0, 1).

Comment. While this combination may sound arbitrary, it
is actually the only rule which satisfied reasonable scale-
invariance conditions; see, e.g., [25], [28].

For our problem, Hurwicz’s criterion means that we select
a utility function v′1(t) for which the combination

J(v′1)
def
= α · min

v2,...,vn

u(v′1, v1, v2, . . . , vn)+

(1− α) · max
v2,...,vn

u(v′1, v1, v2, . . . , vn) (2)

attains the largest possible value.

For territorial division, it is beneficial to report the correct
utilities: result. It turns out that unless we select the optimistic
criterion, it is always best to select v′1(t) = v1(t), i.e., to tell
the truth.

Theorem 1. When α > 0, the objective function J(v′1) attains
its largest possible value for v′1(t) = v1(t).

Comment. In the optimistic case, all choices are equivalent.
In such situations, when we have several different alterna-

tives that lead to the same value of the objective function, a
natural idea is to use some other criterion to select between
these optimal alternatives; see, e.g., [27]. In our case, a
natural other criterion is to consider pessimism or Hurwicz’s
pessimism-optimism criterion. In both cases, we come to a
conclusion that telling the truth is the best strategy.

Comment. For reader’s convenience, the proof of this result is
presented in the appendix.

V. HOW TO FIND INDIVIDUAL PREFERENCES FROM
COLLECTIVE DECISION MAKING: INVERSE PROBLEM OF

GAME THEORY

Problem. We have mentioned that usually, it is relatively easy
to elicit preferences from the participants, and to determine
utility values based on these preferences.

In some cases, however, we have a subgroup (“clique”) of
participants who do their best to make joint decisions and who
do not want to disclose their differences. This is a frequent
situation, e.g., within political groups – who are afraid that
any internal differences can be exploited by the competing
groups. In such situations, it is extremely difficult to determine
individual preferences based on the group decisions.

For example, during the Cold War, this is what kremlinol-
ogists tried to do – with different degrees of success.

In this section, we will show how this determination can be
done.

Comment. Decision making and game theory are usually
trying, given individual preferences, to find the appropriate
group decision. Here, we encounter an inverse problem: given
the decisions, we want to reconstruct individual preferences.



Towards an algorithm for solving the inverse problem. Let
us assume that we have a group of n participants P1, . . . , Pn

that does not want to reveal its individual preferences. We
can, however, ask the group as a whole to compare different
preferences; we must use the result of this comparison to
determine individual utility functions.

We assume that when making group decisions, the group
uses Nash’s solution. Of course, since Nash’s solution depends
only on the product of the utility functions, in the best case,
we will be able to determine n individual utility functions
without knowing which of these functions corresponds to
which individual.

Comment. This is OK, because the main objective of our
determining these utility functions is to be able to make
decision of a larger group based on Nash’s solution – and
in making this decision, it is irrelevant who has what utility
function.

In this sense, our problem is easier than the problem solved
by political analysts: from our viewpoint, it is sufficient to
know that one member of the ruling clique is more conserva-
tive and another is more liberal, but a political analyst would
also be interesting in knowing who exactly is conservative and
who is more liberal.

We have mentioned that the utility function is determined
modulo an arbitrary linear transformation u(A) → a · u(A) +
b. Thus, without losing generality, we can assume that the
individual utility functions ui(A) are re-scaled in such a way
that for the status quo A(0), we have ui(A

(0)) = 0, and for a
pre-selected very favorable outcome A+, we have ui(A

+) =
1.

Let us now select an alternative A and let us show how
we can determine the values u1(A), . . . , un(A). For each real
number q ∈ [0, 1], we can form a lottery L(q) in which we
have A+ with probability q and A with probability 1− q. For
this lottery L(q), the individual utility is equal to

u(L(q)) = q · u(A+) + (1− q) · u(A) = q + (1− q) · ui(A);

therefore, Nash’s product is equal to
n∏

i=1

(q+ (1− q) · ui(A)).

For the group, the quality of a lottery “A+ with probability
p, otherwise A(0)” increases with p. When p = 0, this lottery
is simply a status quo A(0), so it is clearly worse than the
lottery L(q). For p = 1, this lottery is simply A+, so it is
clearly preferable to L(q). Thus, by using the above-described
bisection method, for each q, we can find (with arbitrary
accuracy) the value p(q) for which L(q) is equivalent to this
lottery.

For this new lottery, the individual utilities are equal to

ui(A) = p(q) · u(A+) + (1− p(q)) · u(A(0)) =

p(q) · 1 + (1− p(q)) · 0 = p(q),

so Nash’s product is equal to p(q)n. Thus, from the fact that
the new lottery is equivalent to the L(q), we conclude that the

corresponding Nash’s products are equal, i.e., that
n∏

i=1

(q + (1− q) · ui(A)) = p(q)n

for the known values p(q)n.
Dividing both sides of this equality by (1−q)n, we conclude

that
n∏

i=1

(z + ui(A)) = p(q)n/(1 − q)n. We can repeat this

procedure for n different values q = 0, 1/n, 2/n, . . . , (n −
1)/n, and get n different values of the function

F (z)
def
=

n∏
i=1

(z + ui(A)).

This function F (z) is a product of n linear functions with
coefficient 1 at z; it is, therefore, a polynomial of n-th order
in terms of the unknown z:

F (z) = a0 + a1 · z + . . .+ an−1 · zn−1 + zn.

Since we know n values p(l/n)n/(1−l/n)n (0 ≤ i ≤ n−1) of
this function for the values zl = ql/(1− ql) (where ql = l/n),
we can thus determine the coefficients ai of this polynomial by
solving the corresponding system of n linear equations with
n unknowns ai:

a0 + a1 · zl + . . .+ an−1 · zn−1
l + znl =

p(ql)
n

(1− ql)n
(1)

0 ≤ l ≤ n− 1

Once we have found these coefficients and thus, the polyno-

mial F (z) =
n∏

i=1

(z+ui(A)), we can then determine the values

−ui(A) as the roots of this polynomial – i.e., the values for
which F (−ui(A)) = 0.

We can find one of the roots; there exist efficient algorithms
for that; see, e.g., [2]. Once we find a root −u1(A), we can
divide the polynomial by z+u1(A), and get a new polynomial
of order n − 1. We can then use the same algorithm to find
the root of the new polynomial, etc., until we find all n roots
of the original polynomial F (z).

Thus, we arrive at the following algorithm.

Algorithm for determining individual utility values. Let us
assume that we have a group of n participants. We can ask
this group to make joint decisions. Based on these decisions,
we want to find the individual utility values u1(A), . . . , un(A)
of a given alternative A.

For that, we do the following. For each l from 0 to n− 1,
we form the value ql = l/n, and we ask the group to compare
the lottery “A+ with probability ql, otherwise A(0)” with the
lotteries “A+ with probability p, otherwise A(0)” for different
p. By using bisection, we can find the value p(ql) for which
the lottery “A+ with probability ql, otherwise A” is, for this
group, equivalent to the lottery “A+ with probability p(ql),
otherwise A(0)”.

After we find n values p(ql) (0 ≤ l ≤ n− 1), we solve the
system (1) of n linear equations with n unknowns, and get the



coefficients a0, a1, . . . , an−1. Based on these coefficients, we
form a polynomial F (z) = a0+a1 ·z+ . . .+an−1 ·zn−1+zn.

Then, we apply one of the known factorization algorithms
to factorize the resulting polynomial F (z). It factors are z +
ui(A), where ui(A) are the desired values.

From individual utility values to individual utility profiles.
From the viewpoint of group decision making, it is sufficient
to find out individual utility values ui(Aj) for all alternatives
Aj . However, from the more general viewpoint of solving the
inverse problem, it is desirable to find out the individual utility
profiles. For example, if we have two alternatives Aj and Ak,
we want not only to know n values ui(Aj) and n values
ui(Ak), we also want to know which value ui(Ak) goes with
which value ui(Aj).

For that, we pick a real number α ∈ [0, 1] and repeat the
same procedure for the lottery A

def
= “Aj with probability α,

otherwise Ak”. Thus, we determine n individual utilities ui(A)
of this lottery.

For the individual utilities,

ui(A) = α · ui(Aj) + (1− α) · ui(Ak).

Thus, if we only know n values ui(Aj), n values ui(Ak), and
n values ui(A) – without knowing how these values match
– we can then, for each of n values ui(Aj), determine the
corresponding utility value ui(Ak) as the only one of n values
up(Ak) for which the value

α · ui(Aj) + (1− α) ·Ap(Ak)

is equal to one of the n values ui(A).
If we select α to be a random value uniformly distributed

on the interval [0, 1], then the probability that

α · ui(Aj) + (1− α) ·Ap(Ak)

for some wrong p′ ̸= p is also accidentally equal to one of the
n values ui(A) is 0, so this methods leads us to a guaranteed
profile.

What if we do not know how many people are in a group?
In some cases, not only we do not know individual preferences,
but we also do not know how many people are in a group.

In this case, we can repeat the above procedure for n =
1, 2, . . . until we stop getting a meaningful solution for the
corresponding system of linear equations (1); the largest such
n is the number of participants.

Uniqueness in precise mathematical terms. Let us describe
the uniqueness result in precise mathematical terms.

Definition. Let integers n and m be fixed. The value n will
be called number of participants and m will be called number
of alternatives.

• By a lottery, we mean a vector p = (p(0), p+, p1, . . . , pm)
for which pj ≥ 0 and p(0) + p+ + p1 + . . .+ pm = 1.

• By an individual utility function, we mean a vector
u1, . . . , um of positive numbers.

• By a group utility function, we mean a collection of n
utility functions (ui1, ui2, . . . , uim).

• We say that a group utility function u leads to the
following preference relation < between the lotteries:
p < q if and only if

n∏
i=1

p+ +

m∑
j=1

pj · uij

 <

n∏
i=1

p+ +

m∑
j=1

qj · uij

 .

Comment. Here, the probability p(0) means the probability of
the status quo state A(0), p+ means the probability of the
outcome A+, and the utilities are scaled in such a way that
for each participant, ui(A

(0)) = 0 and ui(A
+) = 1.

Our main result is that after this re-scaling, the utility values
are uniquely determined by the observed group preferences
– of course, modulo possible renaming (permutation) of the
participants, because the Nash group decision model does not
change if two participants simply swap their utility functions
(and their preferences).

Theorem 2. If two group utility functions uij and u′
ij lead to

the same preference, then they differ only by permutation, i.e.,
u′
ij = uπ(i),j for some permutation π of the set {1, . . . , n} of

participants.

In other words, modulo permutation of participants, we
can uniquely determine the utility values from the group
preferences.

The proof of this result is also given in the Appendix.

VI. DESCRIPTION OF ALTRUISM AND PARADOXES OF
LOVE

Interdependence of utilities: idea. In the previous text, we
implicitly assumed that the utility ui(Aj) of a participant Pi

depends only on the objective situation, i.e., on the alternative
Aj . In real-life situations, however, the degree of a person’s
happiness is determined not only by the objective factors –
like what this person gets and what others get – but also by
the degree of happiness of other people.

Normally, this dependence is positive, i.e., we feel happier
if other people are happy. However, negative emotions such
as jealousy are also common, when someone else’s happiness
makes a person not happy.

The idea that a utility of a person depends on utilities
of others was first described in [32], [33]. It was further
developed by another future Nobelist Gary Becker; see, e.g.,
[3]; see also [5], [9], [14], [38].

Interdependence of utilities: general description. In general,
the utility ui of i-th person under interdependence can be
described as ui = fi(u

(0)
i , uj), where u

(0)
i is the utility that

does not take interdependence into account, and uj are utilities
of other people.

Interdependence of utilities: linear approximation. The
effects of interdependence can be illustrated on the example
of linear approximation, when we approximate the dependence



by the first (linear) terms in its expansion into Taylor series,
i.e., when the utility ui of i-th person is equal to

ui = u
(0)
i +

∑
j ̸=i

αij · uj ,

where the interdependence is described by the coefficients aij .

Paradoxes of love. This simple and seemingly natural model
leads to interesting and somewhat paradoxical conclusions;
see, e.g., [4], [6], [21].

For example, mutual affection between persons P1 and P2

means that α12 > 0 and α21 > 0. In particular, selfless love,
when someone else’s happiness means more than one’s own,
corresponds to α12 > 1.

In general, for two persons, we thus have

u1 = u
(0)
1 + α12 · u2;

u2 = u
(0)
2 + α21 · u1.

Once we know the original utility values u
(0)
1 and u

(0)
2 , we

can solve this system of linear equations and find the resulting
values of utility:

u1 =
u
(0)
1 + α12 · u(0)

2

1− α12 · α21
;

u2 =
u
(0)
2 + α21 · u(0)

1

1− α12 · α21
.

As a result, when two people are deeply in love with each other
(α12 > 1 and α21 > 1), then positive original pleasures u(0)

i >
0 lead to ui < 0 – i.e., to unhappiness. This phenomenon may
be one of the reasons why people in love often experience
deep negative emotions.

From this viewpoint, a situation when one person loves
deeply and another rather allows him- or herself to be loved
may lead to more happiness than mutual passionate love.

A similar negative consequence of love can also happen in
situations like selfless Mother’s love when α12 > 0 may be
not so large but α21 is so large that α12 · α21 > 1.

There are also interesting consequences when we try to
generalize these results to more than 2 persons. For example,
we can define an ideal love, when each person treats other’s
emotions almost the same way as one’s own, i.e., α12 = α =

1 − ε for a small ε > 0. For two people, from u
(0)
i > 0, we

get ui > 0 – i.e., we can still have happiness. However, if we
have three or more people in the state of mutual affection, i.e.,
if

ui = u
(0)
i + α ·

∑
j ̸=i

uj ,

then in case when everything is fine – e.g., u(0)
i = u(0) > 0 –

we have

ui · (1− α · (n− 1)) = ui · (2− ε− (1− ε) · n) = u(0),

hence

ui =
u(0)

2− ε− (1− ε) · n
< 0,

i.e., we have unhappiness. This may be the reason why 2-
person families are the main form – or, in other words, if two
people care about the same person (e.g., his mother and his
wife), all there of them are happier if there is some negative
feeling (e.g., jealousy) between them.

Comment. It is important to distinguish between emotional
interdependence in which one’s utility is determined by the
utility of other people, and “objective” altruism, in which one’s
utility depends on the material gain of other people – but
not on their subjective utility values, i.e., in which (in the
linearized case)

ui = u
(0)
i +

∑
j

αj · u(0)
j .

In this approach, when we care about others’ well-being and
not their emotions, no paradoxes arise, and any degree of
altruism only improves the situation; see, e.g, [10], [11], [30].

This objective approach to interdependence was proposed
and actively used by yet another Nobel Prize winner: Amartya
K. Sen; see, e.g., [35], [36], [37].

An alternative explanation of the paradoxes of love is that
there is a time delay ∆t between the emotions of a person
and the reaction of the other persons to these emotions. This
time delay can be very small, in factions of a second need
to process the information, but still, the utility of a person at
a moment time t depends not on the utility of others at the
very same moment of time, but rather on the utility at some
previous moment of time t−∆t. In this case, even if we have
mutual affection, we avoid negative values of utility
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APPENDIX 1: PROOF THAT FOR TERRITORIAL DIVISION,
IT IS BENEFICIAL TO REPORT THE CORRECT UTILITIES

Structure of the proof. We start by re-scaling the values of
the utility functions so that all the gains become between 0 and
1. Then, we compute the optimistic gain u+, the pessimistic
gain u−, and come up with the conclusion.

Re-scaling. Since the utility function is defined modulo an
arbitrary multiplicative constant, we can always re-scale the
utility functions in such a way that ui(A) = 1 for the entire
space A, i.e., that

∫
A
vi(t) dt = 1 for all i.

Proof that u+ ≤ 1. Let us show that for every function v′1(t),
the optimistic estimate

u+(v′1)
def
= max

v2,...,vn

u(v′1, v1, v2, . . . , vn)

cannot exceed 1.
Indeed, no matter what partition X1, . . . , Xn we have, the

resulting utility of the first participant u1(X1) =
∫
X1

v1(t) dt

cannot exceed the whole interval
∫
A
v1(t) dt. We have re-

scaled all the utility functions in such a way that this whole
integral is 1, so the gain of P1 cannot exceed 1.

Proof that u+ = 1. Let us show that for every function v′1(t),
the optimistic estimate u+(v′1) is equal to 1.

For that, let us show that we can get the gain which is as
close to 1 as possible.

Indeed, suppose that the participant P2 is only interested in
a small neighborhood of a point t2, so that, for some small
number ε > 0, we have v2(t) = 0 for all the points at distance
> ε from this point t2. Suppose also that the participant P3

is only interested in a small neighborhood of a point t3 ̸=
t2, . . . , and the participant Pn is only interested in a small
neighborhood of a point tn – and all these n−1 neighborhoods
N2, . . . , Nn are disjoint.

Then, in an optimal partition, it does not make sense to
assign to P2 any points outside N2 – because adding these
points to X2 would not change the utility u2 =

∫
X2

v2(t) dt,
but assigning them to X1 would increase u1 – if v1(t2) >
0. Similarly, in the Nash optimal partition, participant P3 is
only assigned the points in N3, etc. So, in the Nash optimal
partition, all the points outside n − 1 small neighborhoods
N2, . . . , Nn are assigned to P1. So, the resulting utility of P1

is equal to the integral of v1(t) over the complement to these
neighborhoods. When ε → 0, this integral tends to

∫
A
v1(t) dt

– i.e., to 1.

Comment. We have shown that the optimistic gain u+ is
always equal to 1 – irrespective of what utility function we
report. Thus, in the purely optimistic case, we can report any
utility function and get the same result. So, we have proved
the comment after Proposition 1.

Proof that when we report the correct utility function
v′1(t) = v1(t), then u− ≥ 1/n. Let us now prove that when
v′1(t) = v1(t), then the pessimistic estimate

u−(v′1)
def
= min

v2,...,vn

u(v′1, v1, v2, . . . , vn)

is larger than or equal to 1/n.
Let us show that for the optimal partition, u1(X1) ≥

u1(X2). Indeed, according to [26], in the optimal partition
there exists a threshold value λ such that of all the points x
from the union X1 ∪ X2, points with v2(x)/v1(x) < λ are



assigned to X1 and points with v2(x)/v1(x) > λ are assigned
to X2.

Similar to the proofs from [26], let us add a small neigh-
borhood of a point x0 ∈ X2 where v2(x0)/v1(x0) ≈ λ to the
set X1. This adds ε · v1(x0), where ε is the volume of this
neighborhood, to the utility u1(X1) of the first participant,
and subtracts ε · v2(x0) ≈ ε · v1(x0) ·λ from u2(X2). Thus, in
Nash’s product, the subproduct u1(X1) · u2(X2) is replaced
by

(u1(X1) + ε · v1(x0)) · (u2(X2)− ε · v1(x0) · λ) =

u1(X1) · u2(X2) · v1(x0) · ε · (u2(X2)− λ · u1(X1)) + o(ε).

Since the partition X1, X2, . . . was maximizing the Nash prod-
uct, this change can only decrease the value of the product;
so, we conclude that

λ · u1(X1) ≥ u2(X2).

For values x ∈ X2, we have v2(x)/v1(x) ≥ λ, so v2(x) ≥
λ ·v1(x). Integrating this inequality over X2, we conclude that

u2(X2) =

∫
X2

v2(t) dt ≥ λ ·
∫
X2

v1(t) dt = λ · u1(X2).

So, from λ · u1(X1) ≥ u2(X2), we conclude that

λ · u1(X1) ≥ u2(X2) ≥ λ · u1(X2),

hence u1(X1) ≥ u1(X2).
Similarly, u1(X1) ≥ u1(Xi) for all i. By adding the

inequalities corresponding to i = 1, 2, . . . , n, we conclude that

n · u1(X1) ≥ u1(X1) + u1(X2) + . . .+ u1(Xn) =∫
X1

v1(t) dt+ . . .+

∫
Xn

v1(t) dt =

∫
A

v1(t) dt = 1,

hence u1(X1) ≥ 1/n.

Proof that when we report the correct utility function
v′1(t) = v1(t), then u− = 1/n. We have shown that for all
utility functions, u− ≥ 1/n. Let us prove that there exist utility
functions for which u− = 1/n.

Indeed, if we take v2(t) = . . . = vn(t) = v1(t), then each
point has the same value for all n participants; so, we simply
divide the overall utility of 1 into n parts u1+. . .+un = 1 for
which the product u1 · . . . ·un is the largest possible. It is well
known (and easy to prove) that the largest value of this product
is attained when all ui are equal: u1 = . . . = un = 1/n. In
this case, each participant gets exactly the utility 1/n.

Thus, indeed u− = 1/n.

Proof that when we report a false utility function v′1(t) ̸=
v1(t), then u− < 1/n. If we report a utility function v′1(t),
then, as we have just mentioned, when v2(t) = . . . = vn(t) =
v′1(t), the participant P1 can get, as X1, any set for which∫
X1

v′1(t) dt = 1/n.
Since v1(t) ̸= v′1(t), let us take, as X1, the set of all the

values for which v1(t)/v
′
1(t) ≤ λ, where the threshold λ is

determined by the condition that
∫
X1

v′1(t) dt = 1/n. For t ∈
X1, we have v1(t) ≤ λ · v′1(t), hence

u1(X1) =

∫
X1

v1(t) dt ≤ λ ·
∫
X1

v′1(t) dt = λ · (1/n),

and the equality is only possible if v′1(t) = λ · v1(t) for all
t ∈ X1.

Similarly, for t ̸∈ X1, we have v1(t) ≥ λ · v′1(t), hence

1−u1(X) =

∫
−X1

v1(t) dt ≥ λ·
∫
−X1

v′1(t) dt = λ·(1−1/n),

and the equality is only possible if v′1(t) = λ · v1(t) for all
t ̸∈ X1.

By dividing the inequalities u1(X1) ≤ λ · (1/n) and 1 −
u1(X1) ≥ λ · (1− 1/n), we conclude that

u1(X1)

1− u1(X1)
≤ 1/n

1− 1/n
,

where the inequality is only possible when v1(t) = λ · v′1(t)
for all t.

Since both v1(t) and v′1(t) are normalized to 1 in the sense
that

∫
A
v1(t) dt =

∫
A
v′1(t) dt = 1, the only way to have

v′1(t) = λ · v1(t) for all t ∈ A is to have λ = 1 and thus,
v′1(t) = v1(t). We know that v′1(t) ̸= v1(t), hence equality is
impossible, and

u1(X1)

1− u1(X1)
<

1/n

1− 1/n
.

Reversing both sides in this inequality, we get

1− u1(X1)

u1(X1)
>

1− 1/n

1/n
.

Adding 1 to both sides, we get 1/u1(X1) > 1/(1/n) = n,
hence u1(X1) < 1/n. The statement is proven.

Conclusion. When we report a correct utility function, we
get u+ = 1 and u− = 1/n. When we report a false utility
function, then we get u+ = 1v and u− < 1/n. Thus, for every
α > 0, the value of α · u− + (1− α) · u+ is the largest when
we report the correct utility function. The theorem is proven.

APPENDIX 2: PROOF THAT, MODULO PERMUTATION, WE
CAN UNIQUELY RECONSTRUCT INDIVIDUAL

PREFERENCES FROM GROUP DECISIONS

For every lottery, we can compare this lottery with lotteries
in which q1 = . . . = qm = 0, and thus, get a value q+ for
which (

q+
)n

=
n∏

i=1

(p+ + p1 · ui1 + . . .+ pm · uim).

In other words, based on the group preferences, for every m+1
non-negative values p+, p1, . . . , pm for which p++p1+ . . .+
pm ≤ 1, we can determine the value of the function

F (p+, p1, . . . , pm)
def
=

n∏
i=1

(p++p1 ·ui1+ . . .+pm ·uim). (2)



This function is a polynomial of n-th order in terms of m+1
variables. Each such polynomial has the form
n∑

i+=1

n∑
i1=1

. . .
n∑

im=1

ai+,i1,...,inai+,i1,...,im · (p+)i
+

·pi11 · . . . ·pinn .

Thus, each such polynomial is uniquely determined by finitely
many coefficients ai+,i1,...,im .

Based on the group preferences, we know the values of this
polynomial at infinitely many points; based on these points,
we can uniquely reconstruct the coefficients – by solving
the corresponding system of linear equations in terms of the
unknown ai+,i1,...,in .

So, based on the group preferences, we can uniquely recon-
struct the polynomial F (p+, p1, . . . , pm). The above represen-
tation (2) means that we factorize the polynomial into n linear
factors. Factorization of a polynomial into irreducible factors
is known to be unique modulo scalar factors: i.e., if F =

∏
Fi

and F =
∏

F ′
j , then each factor Fi is equal to c ·F ′

j for some
constant c and some factor F ′

j . In our case, all factors have a
coefficient 1 at p+, so c = 1. Thus, modulo permutation, the
factors p+ + p1 · ui1 + . . .+ pm · uim – hence the values uij

– are uniquely determined by the group preferences.
The theorem is proven.


