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1 General Motivation and Goals of the Paper

In geosciences, we often need to combine two (or more) images of the same
area:

• different images bring different information; so, to get a better understand-
ing, we must fuse the corresponding data; e.g., we must combine a satellite
image with a radar image;

• comparison of two images – e.g., images made at different moments of time
– can also give us information about the changes: e.g., by comparing pre-
and post-earthquake images, we can determine the effect of the earthquake.

Compared images are often obtained from slightly different angles, from
slightly different positions. Therefore, in order to compare these images, we
must first register them, i.e., find the shift, rotation, and scaling after which
these images match as much as possible, and then apply these transformations
to the original images.

There exist efficient algorithms for registration and for the corresponding
transformations. However, these algorithms are only effective when we know
these images with high accuracy. In many real-life situations – e.g., when
comparing pre- and post-earthquake images – the accuracy with which we
know these images is of the same order of magnitude as the desired difference
between the compared images.

In this paper, we describe how the existing image registration algorithms
can be extended to such low-accuracy (high uncertainty) situations. Specifi-
cally, we describe a new algorithm, and we show how this new algorithm can
be efficiently applied in geosciences.
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2 Structure of the Paper

Since our new algorithm is an extension of the existing image registration
algorithms, we first briefly overview these existing algorithms, with a special
emphasis on image registration algorithms that we will be using to process
low accuracy images. These existing algorithms are described in Section 3. In
Section 4, we provide an example of low accuracy geoscience-related images,
an example for which the existing image registration algorithms (originally
designed for high accuracy images) do not work. In Section 5, we explain
how to modify the existing image registration algorithm so that it can be
applicable to low accuracy images as well. The results of applying the new
algorithm to the selected images are described in Section 6. Finally, Section
7 contains conclusions and future work.

3 Registering Images Known With High Accuracy

Motivation

In order to adequately process satellite and radar information, it is necessary
to find the exact correspondence between different types of images and be-
tween these images and the existing maps. In other words, we need to register
these images.

There exist several efficient algorithms for image registration; see, e.g.,
[5, 33] and references therein. Most of these algorithms work well for images
known with high accuracy. The main objective of this paper is to extend these
algorithms to images which are only known with low accuracy. To describe
the needed extensions, let us first provide a brief overview of the existing
algorithms for registering high-accuracy images, with a special emphasis on
algorithms based on the ideas that can be extended to low accuracy images
as well.

Image registration algorithms: brief overview

There exist many methods for image registration. Among the most widely used
methods are methods of point matching, where we find the matching points
in the two images, and then the most appropriate transformation (rotation
and/or shift) which maps the points from one image into the corresponding
points from the other image.

Point matching methods work well when the images have clearly identi-
fiable matching points, and when we know the images with a high accuracy
– so that we can identify and match these matching points with a reason-
able accuracy. For example, in satellite images, we often have clear matching
points representing special landmarks such as landmark city areas, landmark
bridges, or tips of peninsulas. Such landmarks can usually be easily found
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in highly populated areas or in special terrains in which the area is highly
non-homogeneous: e.g., there may be a clear shore line with a clear land-
mark point, or there may be a large clearly distinguishable river with a clear
landmark turn.

However, there are many homogenous areas where it is not easy to find
landmarks. For example, in the desert areas of the U.S. Southwest, the only
visible landmarks are road intersections, and there are usually several similar-
looking road intersections in the same image, so it is difficult to find the
matching points between the two images. Similarly, in the mountain areas,
there many landmarks like summits and ridges, but usually, there are several
similar-looking summits and ridges in each image, so it is difficult to match
points in the two images.

For images known with very low accuracy, we may still find landmarks.
However, since we only know the images with a very low accuracy, we may
only be able to locate these landmarks with a very low accuracy, too low to
enable us to adequately register the two images.

Sometimes, instead of landmark points, we have landmark features. For
example, we may not have a landmark bridge, but we may have a clearly dis-
tinguishable river. In such situations, instead of matching points, we can match
features. Such feature-matching algorithms are also efficiently used in image
registration. However, in homogenous terrains and/or in situations when we
only know the images with low accuracy, we may only be able to locate these
features with a very low accuracy, too low to enable us to adequately register
the two images.

In some cases, e.g., in many astronomical images, we have an image sur-
rounded by an empty space. In this case, even when we cannot find the land-
mark points in the two images, we can match these images by comparing, e.g.,
the centers of gravity of these images. Alas, this is not the case in images like
satellite images or radar images.

As an example of low accuracy images for which registration is practically
important, we will actually consider low accuracy satellite images. So, in or-
der to come up with an algorithm for registering low accuracy images, an
algorithm which should be applicable for satellite images, we must place our
emphasis on image registration techniques which go beyond point matching,
feature matching, or simple geometric transformations in the image domain.
We will see that many such algorithms are based on the use of the Fast Fourier
Transform (FFT).

Before we start describing these methods, let us provide a motivation for
using FFT in image registration.

Why Fourier-based methods in image registration

Let us consider the simplest case when the two images have the same orien-
tation, and they differ only by shift. Each image is naturally described as a
function I(x) which assigns to every pixel x = (x1, x2) the intensity I(x) at
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this pixel. The fact that the two images I(x) and I ′(x) differ only by shift
means that I ′(x) ≈ I(x + a) for some (unknown) shift a = (a1, a2).

In this case, the problem is as follows: we have two images I(x) and I ′(x),
and we must find the shift a for which the image I ′(x) will be, in some
reasonable sense, the closest to the shifted image I(x+a). A reasonable way to
describe the closeness between the two images is to require that for every pixel
x, the corresponding intensities are close to each other. We can use, e.g., the
squared difference (I(x+a))− I ′(x))2 between these values as the measure of
the similarity at x, and we can use the sum (integral)

∫
(I(x+a)−I ′(x))2 dx of

these square differences over all locations x as the measure of overall similarity
between the two images.

For two similarly oriented 2-dimensional images I(x) and I ′(x), the prob-
lem of finding the shift a which minimizes the above integral takes the fol-
lowing form: find a for which the integral

∫
(I ′(x)− I(x + a))2 dx attains the

smallest possible value. By representing the square of the difference (I ′ − I)2

as the sum of three terms (I ′)2 + I2 − 2 · I ′ · I, we can represent the above
scoring function as

∫
(I ′(x))2 dx +

∫
I(x + a)2 dx− 2

∫
I ′(x) · I(x + a) dx.

The first integral in the sum does not depend on the shift at all. By using the
new coordinates y = x + a, we can show that the second integral is equal to∫

I(x)2 dx and thus, also does not depend on the shift. So, finding the shift
for which the sum is the smallest possible is equivalent to finding the shift
for which the cross-correlation term

∫
I ′(x) · I(x + a) dx attains the largest

possible value.
For images defined on an n × n grid, a straightforward approach would

require that we compute the value of the scoring function for all n2 shifts
a. Computing each integral requires time O(n2), so overall, we need time
O(n2) ·O(n2) = O(n4).

This computation can be performed much faster if we take into account
that the cross-correlation term is a convolution between the images I(x) and
I ′(x). Convolution is one of the main techniques in signal processing, and it
is well known that we can compute convolution faster (in time O(n2 · log(n)))
by using Fast Fourier Transform (FFT); see, e.g., [7]. Specifically, to compute
the convolution, we need the following steps:

• first, we apply FFT to the original images, resulting in functions F (ω) and
F ′(ω);

• then, for each frequency ω, we compute the product

R(ω) def= F (ω) · (F ′)∗(ω)

(where F ∗ means complex conjugation);
• finally, we apply the inverse Fourier transform to the resulting function

R(ω), and get the desired auto-correlation function.
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We can now find the shift as the vector a for which the cross-correlation
attains the largest possible value.

FFT of an image of size N requires N · log(N) steps, so for a 2-dimensional
image of size N = n2, we need O(n2 · log(n)) steps. Multiplication of the two
Fourier transforms and the final search for the largest value both require
processing each pixel once, so both require time O(n2). As a result, we can
find the desired shift a in time O(n2 · log(n)) + O(n2) = O(n2 · log(n)).

The existing FFT-based registration algorithms

The main purpose of the above simple algorithm is to explain why FFT is
used in image registration. This simple algorithm only detects the shift, and
even for shift estimation, it is not the best possible algorithm; see, e.g., [5, 33].
The best of known FFT-based registration algorithms are presented in [3, 4,
5, 11, 12, 13, 21, 24, 25, 30, 31, 33]. The main ideas behind these FFT-based
image registration algorithms are as follows.

The simplest case: shift detection in the absence of noise

Let us first consider the above case when two images differ only by shift.
It is known that if two images I(x) and I ′(x) differ only by shift, i.e., if
I ′(x) = I(x + a) for some (unknown) shift a = (a1, a2), then their Fourier
transforms

F (ω) =
1
2π

·
∫ ∫

I(x) · e−2π·i·(x·ω) dx1dx2,

F ′(ω) =
1
2π

·
∫ ∫

I ′(x) · e−2π·i·(x·ω) dx1dx2,

where i def=
√−1 and (x · ω) def= x1 · ω1 + x2 · ω2, are related by the following

formula:
F ′(ω) = e2π·i·(ω·a) · F (ω). (1)

Indeed, since I ′(x) = I(x+a), the Fourier transform F ′(ω) of the image I ′(x)
takes the form

F ′(ω) =
1
2π

·
∫

I(x + a) · e−2π·i·(x·ω) dx,

where we denoted dx def= dx1dx2.
We can simplify this expression if we introduce a new vector variable y def=

x + a, so that x = y − a. Here, dx = dy, so

F ′(ω) =
1
2π

·
∫

I(y) · e−2π·i·((y−a)·ω) dy.

Here, ((y − a) · ω) = (y · ω)− (a · ω), hence

e−2π·i·((y−a)·ω) = e−2π·i·(y·ω) · e2π·i·(a·ω).
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The second factor does not depend on y, so we can move it outside the integral
and conclude that

F ′(ω) = e2π·i·(a·ω) ·
(

1
2π

·
∫

I(y) · e−2π·i·(y·ω) dy
)

.

The expression in parentheses is exactly F (ω), so indeed the formula (1) is
true.

It is known that the magnitude |e2π·i·(ω·a)| (also known as the modulus or
the absolute value) of the complex value

e2π·i·(ω·a) = cos(2π · (ω · a)) + i · sin(2π · (ω · a))

is equal to 1. Therefore, if the images are indeed obtained from each other by
shift, then their Fourier transforms have the same magnitude:

M ′(ω) = M(ω), (2)

where we denoted

M(ω) = |F (ω)|, M ′(ω) = |F ′(ω)|. (3)

The actual value of the shift a can be obtained if we use the formula (1)
to compute the value of the following ratio:

R0(ω) =
F ′(ω)
F (ω)

. (4)

Substituting (1) into (4), we get

R0(ω) = e2π·i·(ω·a). (5)

Therefore, the inverse Fourier transform P0(x) of this ratio is equal to the
delta-function δ(x− a).

In other words, in the ideal no-noise situation, this inverse Fourier trans-
form P0(x) is equal to 0 everywhere except for the point x = a; so, from P0(x),
we can easily determine the desired shift by using the following algorithm:

• first, we apply FFT to the original images I(x) and I ′(x) and compute
their Fourier transforms F (ω) and F ′(ω);

• on the second step, we compute the ratio (4);
• on the third step, we apply the inverse FFT to the ratio R0(ω) and com-

pute its inverse Fourier transform P0(x);
• finally, on the fourth step, we determine the desired shift a as the only

value a for which P0(a) 6= 0.
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Shift detection in the presence of noise

The above algorithm assumes that the images I(x) and I ′(x) are exactly the
same image, differing only by a shift: I ′(x) = I(x+a). In real life, the measured
intensity values have some noise in them. For example, I(x) and I ′(x) may be
two satellite images obtained during two different satellite overflights over the
same area. The lighting conditions may slightly change from one overflight to
another, which can be represented as the fact that a “noise” was added to the
actual image. Due to the noise, even after the shift, the intensity values will
be only approximately equal: I ′(x) ≈ I(x + a).

In the ideal non-noise case, the inverse Fourier transform P0(x) of the ratio
(4) is equal to the delta-function δ(x−a), i.e., equal to 0 everywhere except for
the point x = a. In the presence of noise, the values of P0(x) will be slightly
different from the delta-function. It seems reasonable to expect that still, the
value |P0(a)| should be much larger than all the other values of this function.
Thus, in principle, it may seem that the value of the shift can be determined
as the value at which |P0(a)| is the largest.

In practice, however, due to noise, for some spatial frequencies ω, the value
of the Fourier transform F (ω) corresponding to the image I(x) may be close
to 0, while the value of the Fourier transform F ′(ω) corresponding to the
image I ′(x) may be non-zero. For such frequencies, the ratio (4) can be very
high. These high values dominate the ratio R0(ω) and thus, distort the inverse
Fourier transform P0(x). To avoid this distortion, it is desirable to replace the
formula (4) with a more noise-resistance one.

In general, one of the general techniques for making a data processing
algorithm more noise-resistant is to take into account constraints on the input
data. In the ideal case, the magnitude |R0(ω)| of the complex ratio R0(ω) (as
described by the expression (4)) is equal to 1. In the presence of noise, the
observed values of the intensities may differ from the actual values; as a result,
their Fourier transforms also differ from the values and hence, the magnitude
of the ratio (4) may be different from 1.

Let us therefore describe how we can improve the accuracy of this method
if, instead of simply processing the measurement results, we take into consid-
eration the additional knowledge that the magnitude of the actual ratio (4) is
exactly equal to 1.

Let us denote the actual (unknown) value of the value e2π·i·(ω·a) by r.
Then, in the absence of noise, the equation (1) takes the form

F ′(ω) = r · F (ω). (5)

In the presence of noise, the computed values F (ω) and F ′(ω) of the Fourier
transforms can be slightly different from the actual values, and therefore, the
equality (5) is only approximately true:

F ′(ω) ≈ r · F (ω). (6)
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In addition to the equation (6), we know that the magnitude of r is equal to
1, i.e., that

|r|2 = r · r∗ = 1, (7)

where r∗ denotes a complex conjugate to r.
As a result, we know two things about the unknown value r:

• that r satisfies the approximate equation (6), and
• that r satisfies the additional constraint (7).

We would like to get the best estimate for r among all estimates which satisfy
the condition (7). To get the optimal estimate, we can use the Least Squares
Method (LSM). According to this method, for each estimate r, we define the
error

E = F ′(ω)− r · F (ω) (8)

with which the condition (6) is satisfied. Then, we find among all estimates
which satisfy the additional condition (7), a value r for which the square
|E|2 = E · E∗ of this error is the smallest possible.

The square |E|2 of the error E can be reformulated as follows:

E · E∗ = (F ′(ω)− r · F (ω)) · (F ′∗(ω)− r∗ · F ∗(ω)
)

=

F ′(ω) ·F ′∗(ω)−r∗ ·F ∗(ω) ·F ′(ω)−r ·F (ω) ·F ′∗(ω)+r ·r∗ ·F (ω) ·F ∗(ω). (9)

We need to minimize this expression under the condition (7).
For conditional minimization, there is a known technique of Lagrange mul-

tipliers, according to which the minimum of a function f(x) under the condi-
tion g(x) = 0 is attained when for some real number λ, the auxiliary function
f(x) + λ · g(x) attains its unconditional minimum; this value λ is called a
Lagrange multiplier.

For our problem, the Lagrange multiplier technique leads to the following
unconditional minimization problem:

F ′(ω) · F ′∗(ω)− r∗ · F ∗(ω) · F ′(ω)−

r · F (ω) · F ′∗(ω) + r · r∗ · F (ω) · F ∗(ω) + λ · (r · r∗ − 1) → min . (10)

We want to find the value of the complex variable r for which this expression
takes the smallest possible value. A complex variable is, in effect, a pair of two
real variables, so the minimum can be found as a point at which the partial
derivatives with respect to each of these variables are both equal to 0. Alter-
natively, we can represent this equality by computing the partial derivative of
the expression (10) relative to r and r∗. If we differentiate (10) relative to r∗,
we get the following linear equation:

−F ∗(ω) · F ′(ω) + r · F (ω) · F ∗(ω) + λ · r = 0. (11)

From this equation, we conclude that
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r =
F ∗(ω) · F ′(ω)

F (ω) · F ∗(ω) + λ
. (12)

The coefficient λ can be now determined from the condition that the resulting
value r should satisfy the equation (7). In other words, we must have

|F ∗(ω) · F ′(ω)|
|F (ω) · F ∗(ω) + λ| = 1,

i.e., equivalently, that

|F ∗(ω) · F ′(ω)| = |F (ω) · F ∗(ω) + λ|. (13)

The expression F (ω) ·F ∗(ω)+λ is a real number, so – depending on the sign
– its magnitude (absolute value) is equal either to this same number or to its
opposite, i.e.,

F (ω) · F ∗(ω) + λ = ±|F (ω) · F ∗(ω) + λ|. (14)

Due to (13) and (14), we thus have

F (ω) · F ∗(ω) + λ = ±|F ∗(ω)| · |F ′(ω)|. (15)

Substituting the expression (15) into the formula (11), we conclude that

r = ± F ∗(ω) · F ′(ω)
|F ∗(ω)| · |F ′(ω)| .

In principle, the sign can depend on the spatial frequency ω. However, since
the observed images I(x) and I ′(x) are functions which are different from 0
only in a bounded area, their Fourier transforms are continuous. It is therefore
reasonable to consider expressions which are continuously depending on the
frequency ω. To make the above expression continuous, we must use the same
sign for all frequencies. If we use the positive sign for all the frequencies, then
we arrive at the following ratio:

r =
F ∗(ω) · F ′(ω)
|F ∗(ω)| · |F ′(ω)| . (16)

(One can check that if we select a negative sign for all the spatial frequencies,
we will end up with the exact same algorithm.)

So, in the presence of noise, instead of using the ratio (4), we should
compute, for every ω, the optimal approximation

R(ω) =
F ∗(ω) · F ′(ω)
|F ∗(ω)| · |F ′(ω)| . (17)

This expression is known in signal and image processing; it is called a “cross-
correlation power spectrum” (see, e.g., [5, 33]). What we have just shown
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is that this expression provides an optimal estimate for the desired value
e2π·i·(ω·a).

How can we use this ratio in registration? In the ideal non-noise case, when
I ′(x) = I(x + a), the ratio (17) also equals to e2π·i·(ω·a), Hence, in the ideal
no-noise case, the inverse Fourier transform P (x) of this ratio is equal to the
delta-function δ(x − a), i.e., it is equal to 0 everywhere except for the point
x = a. In the presence of noise, we expect the values of P (x) to be slightly
different from the delta-function, but still, the value |P (a)| should be much
larger than all the other values of this function. Thus, the value of the shift
can be determined as the value at which |P (a)| is the largest. Thus, we arrive
at the following algorithm:

• first, we apply FFT to the original images I(x) and I ′(x) and compute
their Fourier transforms F (ω) and F ′(ω);

• on the second step, we compute the ratio (17);
• on the third step, we apply the inverse FFT to the ratio R(ω) and compute

its inverse Fourier transform P (x);
• finally, on the fourth step, we determine the desired shift a as the vector

a for which the magnitude |P (a)| attains the largest possible value.

The role of soft computing: a comment

In the above explanation of why FFT-based techniques are useful in image
registration, we started with the need to describe the degree with which the
images I ′(x) and I(x+a) are similar, and ended up with an integral expression∫

(I ′(x)− I(x + a))2 dx. To come up with this expression, we simply made a
heuristic transition. A more justified way would be to use a formalism which
is specifically designed to translate natural-language expressions like “close”
and “similar” to explicit expressions – the formalism of fuzzy logic.

For example, to describe the function “similar”, we can use a Gaussian
membership function µ(I ′ − I) = exp(−c · (I ′ − I)2), for some real number
c > 0. In this case, for each pixel x, the degree with which the corresponding
values I ′(x) and I(x + a) are similar is equal to exp(−c · (I ′(x)− I(x + a))2).
We want to find the degree to which them corresponding values are similar
for the first pixel x(1), and the corresponding values are similar for the second
pixel x(2), etc.

If we use the algebraic product a · b to describe “and” – one of the choices
proposed in Zadeh’s original papers – then the resulting degree that the images
I ′(x) and I(x + a) are similar is equal to the product

∏
x

exp(−c · (I ′(x)− I(x + a))2).

Since the product of the exponents is equal to the exponent of the sum,
this degree is equal to exp(−c · S), where S

def=
∑
x

(I ′(x) − I(x + a))2. Since

the degree of similarity exp(−c · S) is a monotonically decreasing function of
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S, to find the shift a for which the degree of similarity between the image
I ′(x) and the shifted image I(x + a) is the largest, we must find the shift for
which the sum S is the smallest. This sum is, in effect, the desired integral∫

(I ′(x)− I(x + a))2 dx.
We have selected this quadratic expression simply to explain that even

in this simple setting, we need to use FFT to make image registration more
efficient. If this quadratic integral was the most adequate expression of the
degree of similarity between the two images, then we would be able to argue
that, since this expression is an example of least square expressions used in
statistical data processing, we could probably use the traditional statistical
techniques to derive this expression.

However, it is known that in many practical problems, the above more
sophisticated FFT-based algorithm works much better than the minimization
of the quadratic integral (see, e.g., [5]) – which shows that the quadratic
integral is, in general, not necessarily the most adequate description of image
matching.

Intuitively, it is reasonably clear why the more sophisticated algorithm is
often better: in the ideal case of the exact shift, this algorithm returns an
impulse function, which has 0 values everywhere except for the desired shift
point a, and which has a high value at a. In contrast, the value of the cross-
correlation function is slowly decreasing around x = a. Not surprisingly, in
the presence of a reasonable noise, the new algorithm leads to a more more ac-
curate reconstruction of the shift than the method based on the minimization
of the quadratic integral.

The fact that a more sophisticated expression for the degree of similarity
is needed is a good indication that soft computing techniques are needed
here: for soft computing, if we select more complex membership functions
and more complex “and” operations (t-norms), we would end up with more
complex expression for the degree of similarity between the two images.

Finding the shift with subpixel accuracy

By finding the vector a for which the value |P (a)| attains the largest possible
value, we end up with a shift which is proportional to the grid step. In other
words, by using this method, we can only determine this shift with an accuracy
of 1 pixel. For images on a computer screen, 1 pixel accuracy may sound like
a very high accuracy. However, for satellite images, 1 pixel is about 15 m.
By using GPS, we can locate objects with higher accuracy; it is therefore
desirable to register images with higher (subpixel) accuracy as well.

In the ideal case – when the actual shift is exactly proportional to the
grid step, and the noise level is very low – the function |P (x)| attains the
exact maximum when x is equal to the desired shift a, and |P (x)| is equal to
practically 0 when x 6= a. When the actual shift is not proportional to the grid
step, then the corresponding “ideal” continuous function |P (x)| still has the
same property, with a sharp maximum at a value a which does not coincide
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with one of the grid points; however, the actually computed function |P (x)| is
based on the extrapolation of that function to the grid. As a result, instead of
a single maximum at a and 0 in all other points, we will have non-zero values
at the grid points close to a. The closer the actual maximum a to the grid
point, the higher the value of |P (x)| at this grid point. Thus, to estimate the
actual shift, we can find the grid points where the function |P (x)| attains its
largest values, and then locate a as a weighted combination of these points,
with a weight monotonically depending on the value of |P (x)|.

In the 1-dimensional case, if the largest values of |P (x)| are attained at
two neighboring points x and x′, then this idea leads to the following estimate
for the shift:

a =
w(|P (x)|) · x + w(|P (x′)|) · x′

w(|P (x)|) + w(|P (x′)|) ,

for some monotonically increasing weight function w(z). It can be theoretically
proven that the optimal image registration is attained when w(z) = zα for
some α > 0, and the empirically optimal value of α is 0.65; see [13].

Similarly, in the 2-dimensional case, to get a subpixel accuracy, we arrive
at the following algorithm [13]:

• we find the point x = (x1, x2) for which |P (x)| takes the largest possible
value;

• then, among 4 points (x1 ± 1, x2 ± 1), we select a point (x′1, x
′
2) for which

the value |P (x′1, x
′
2)| is the largest;

• after that, we apply the formulas

a1 =
w1 · x1 + w′1 · x′1

w1 + w′1
; a2 =

w2 · x2 + w′2 · x′2
w2 + w′2

, (18)

where

w1 = |P (x1, x2)|α + |P (x1, x
′
2)|α; w′1 = |P (x′1, x2)|α + |P (x′1, x

′
2)|α;

w2 = |P (x1, x2)|α + |P (x′1, x2)|α; w′2 = |P (x1, x
′
2)|α + |P (x′1, x

′
2)|α; (19)

with α = 0.65, to find the coordinates (a1, a2) of the shift.

Resulting algorithm

So, we arrive at the following algorithm for determining the shift a:

• first, we apply FFT to the original images I(x) and I ′(x) and compute
their Fourier transforms F (ω) and F ′(ω);

• on the second step, we compute the ratio (17);
• on the third step, we apply the inverse FFT to the ratio R(ω) and compute

its inverse Fourier transform P (x);
• finally, on the fourth step, we do the following:

• we find the point x = (x1, x2) for which |P (x)| takes the largest possible
value;
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• then, among 4 points (x1 ± 1, x2 ± 1), we select a point (x′1, x
′
2) for

which the value |P (x′1, x
′
2)| is the largest;

• after that, we apply the formulas (18) and (19) to find the coordinates
(a1, a2) of the shift.

Reducing rotation and scaling to shift

If, in addition to shift, we also have rotation and scaling, then the magnitudes
Mi(ω) of the corresponding Fourier transforms are not equal, but differ from
each by the corresponding rotation and scaling.

If we go from Cartesian to polar coordinates (r, θ) in the ω-plane, then
rotation by an angle θ0 is described by a simple shift-like formula θ → θ + θ0.

In these same coordinates, scaling is also simple, but not shift-like: r → λ·r.
If we go to log-polar coordinates (ρ, θ), where ρ = log(r), then scaling also
becomes shift-like: ρ → ρ + b, where b = log(λ). So, in log-polar coordinates,
both rotation and scaling are described by a shift.

How to determine rotation and scaling

In view of the above reduction, in order to determine the rotation and scaling
between M and M ′, we can do the following:

• transform both images from the original Cartesian coordinates to log-polar
coordinates;

• use the above FFT-based algorithm to determine the corresponding shift
(θ0, log(λ));

• from the corresponding “shift” values, reconstruct the rotation angle θ0

and the scaling coefficient λ.

Comment. The main computational problem with the transformation to log-
polar coordinates is that we need values M(ξ, η) on a rectangular grid in log-
polar space (log(ρ), θ), but computing (log(ρ), θ) for the original grid points
leads to points outside that grid. So, we need interpolation to find the values
M(ξ, η) on the desired grid. One possibility is to use bilinear interpolation. Let
(x, y) be a rectangular point corresponding to the desired grid point (log(ρ), θ),
i.e.,

x = elog(ρ) · cos(θ), y = elog(ρ) · sin(θ).

To find the value M(x, y), we look at the intensities Mjk, Mj+1,k, Mj,k+1, and
Mj+1,k+1 of the four grid points (j, k), (j + 1, k), (j, k + 1), and (j + 1, k + 1)
surrounding (x, y). Then, we can interpolate M(x, y) as follows:

M(x, y) = (1− t) · (1− u) ·Mjk+

t · (1− u) ·Mj+1,k + (1− t) · u ·Mj,k+1 + t · u ·Mj+1,k+1,

where t is a fractional part of x and u is a fractional part of y.
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Final algorithm: determining shift, rotation, and scaling

• First, we apply FFT to the original images I(x) and I ′(x) and compute
their Fourier transforms F (ω) and F ′(ω).

• Then, we compute the magnitudes M(ω) = |F (ω)| and M ′(ω) = |F ′(ω)|
of these Fourier transforms.

• By applying the above rotation and scaling detection algorithm to the
functions M(ω) and M ′(ω), we can determine the rotation angle θ0 and
the scaling coefficient λ.

• Now, we can apply the corresponding rotation and scaling to one of the
original images, e.g., to the first image I(x). As a result, we get a new

image Ĩ(x).
• Since we rotated and re-scaled one of the images, the images Ĩ(x) and

I ′(x) are already aligned in terms of rotation and scaling, and the only
difference between them is in an (unknown) shift. So, we can again apply
the above described FFT-based algorithm for determining shift: this time,
actually to determine shift.

As a result, we get the desired values of shift, rotation, and scaling; hence, we
get the desired registration.

Comment. Similar techniques can be applied to images in other applications
areas; see, e.g., [19]; in particular, applications to pavement engineering are
described in [2, 26].

4 Images Known with Low Accuracy: Case Study

Introduction

In the previous section, we described algorithms for registering images which
are known with high accuracy. In this section, we will give examples of images
that need to be registered but which are only known with low accuracy. It
turns out that for these images, the existing high-accuracy image registration
techniques do not work, so new methods are needed.

These images are related to terrain changes. In this section, we will de-
scribe types of terrain change, explain why detecting terrain change is impor-
tant, explain why image registration is needed for detecting this change, and
select a specific image registration problem related to terrain change.

Terrain changes, and why it is important to measure these changes

Different natural phenomena can cause the change in the terrain, such as:

• earthquakes, via interseismic and coseismic slip along a fault,
• glacier advance and retreat,
• soil creep, and
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• landslide processes.

For all these phenomena, it is important to be able to estimate the actual
terrain change. This estimation is important because it enable us to gauge the
hazards associating with these phenomena and to predict the future landscape
evolution caused by these phenomena.

Vertical terrain changes can be detected by radar techniques, without the
need for image registration

Some terrain changes can be detected and measured without image registra-
tion: by analyzing the radar data. In the past decade, interferometric synthetic
aperture radar (InSAR) has become a powerful tool for monitoring such defor-
mation and surface changes [6]. Because this tool detects displacements along
the line of sight of the radar system, it is most sensitive to terrain changes
due to vertical deformation, such as those associated with thrust faulting, and
less sensitive to lateral deformation [29].

To detect lateral terrain changes, we need to register satellite images

While InSAR has been used for studying lateral displacements, such as those
due to strike-slip earthquakes [20], decorrelation problems in the near-field
commonly arise. Moreover, appropriate radar data is not widely available due
to the lack of synthetic aperture radar (SAR) satellites in orbit. Currently,
the two best SAR satellites in operation are Radarsat and ERS-2. The cost
per scene for data from these satellites can range from $950 to $3000, with
Radarsat data being the most expensive.

Considering the high cost and scarcity of SAR data, the scientific commu-
nity has looked to other data sets with wider availability, such as the satellite
images. Terrain changes can be monitored with optical remote sensing data
using image processing algorithms that measure apparent offsets in the geo-
graphic locations of the corresponding pixels in two (or more) images of the
same portion of the Earth’s surface taken at different times. These inter-image
pixel offsets define vectors whose orientations indicate the direction of terrain
displacement and whose lengths denote the magnitude of that displacement.

Different types of satellite images

At present, most lateral terrain changes have been detected by using the
Satellite Pour l’Observation de la Terre (SPOT) optical imaging instrument [8,
10, 17, 22, 29]. Previous work with SPOT images has shown the feasibility of
using optical imagery for lateral displacement change detection using Fourier-
based cross-correlation (17) [8, 29]. For example, Dominguez et al. [9] were
able to resolve coseismic displacement along a major thrust fault associated
with the 1999 Chi Chi earthquake in the Central Range of Taiwan from SPOT
images using the Fourier approach. These results have shown optical imagery
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to optimally work in the proximal area of lateral terrain changes, which is the
regime where InSAR techniques are weakest [29].

In [23], we have shown that a similar change detection can be obtained
with Advanced Spaceborne Thermal Emission and Reflection Radiometer
(ASTER) imagery; see, e.g., [1]. The benefits of using ASTER are:

• its dramatically lower cost compared to SPOT,
• the capability of generating Digital Elevation Maps (DEMs) from ASTER

imagery [15], and
• the redundancy afforded by ASTERs stereo capability.

The latter may aid in increasing the precision of terrain change measurements
made using optical image processing techniques.

Test case: the November 14, 2001 Kokoxili earthquake

The left-lateral Kunlun fault, located in northern Tibet, was chosen for
this study because it experienced a large earthquake during a time period
for which ASTER imagery is available. On November 14, 2001, an Ms = 8.1
earthquake occurred causing a 400 km-long surface rupture and as much as
16.3 m of left-lateral strike-slip [16].

This slip is most evident as offset of, and fault scarps developed on, alluvial
terraces. Three time separation window cases were considered. These three
test cases focus on three different segments of fault.

• Test Case 1 spans a two-year time window from March 2000 to July 2002.
The image pair for this case exhibits extensive erosion due to the long time
span of two years. The image pair for this case also has vastly different
pointing angles.

• Test Case 2 has a time separation of two-months, from November 4, 2001 to
December 22, 2001. The imagery used in this test case has 13% cloud cover,
and one of the images contains snow, both of which caused decorrelation.

• Test Case 3 has a time separation of thirteen months, between October
2000 and December 2001. The image pair for this case has the least amount
of preprocessing problems and the smallest pointing angle difference. Al-
though there is some snow cover and changes in water level along the Kusai
Hu lake next to the fault, decorrelation problems were minor. This test
case is the only one with a well-defined fault scarp.

For each case, the accuracy of the change detection methods was assessed by
comparing the geodetic image processing results to field measurements ([16],
Table 2; [14, 28]).
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Site 3
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= Inferred surface      

   Rupture
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Before we start registering the corresponding satellite images, we must apply
topographic corrections

Our objective is to detect the shift between the images with a subpixel accu-
racy. To achieve this accuracy, we must first apply the corrections that will
lead to an exact alignment of the images.

One distortion that e need to correct is parallax, which is defined as the
apparent shift in the location of an object due to changes in the observers
position and, as a result, the relative geometry between the observer and the
target. This concept is the same principle on which human stereoscopic vision
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is based: our right and left eyes view the same scene from slightly different
angles, resulting in parallax that we perceive as depth. Thus, topographic
parallax is created by the change in the position of a satellite as it scans the
uneven surface of the Earth. It results in an apparent shift in the position of
terrain features between two overlapping images taken from different angles;
see, e.g., [18].

Topography can also impart apparent pixel offsets due to scale changes
within the image. In an area of high relief, those parts of the image within
valleys will be a greater distance from the observer than those parts on ridge
tops. The variable distance between target and observer results in mountain-
tops having a larger map scale than the valley bottoms, an effect that non-
linearly distorts images. If left uncorrected, this distortion can create apparent
pixel shifts when comparing two images.

Another apparent pixel offset due to topography stems from the calculation
of geographic coordinates. The geographic coordinates of a pixel in an image
are calculated from orbital and attitude data and lie on the Earths ellipsoid.
Due to the fact the Earth has topography, however, the true latitude and
longitude coordinates of a point on the Earths surface will be displaced from
its ellipsoidal coordinates. Of the three apparent pixel offsets produced by
topography, this last type can cause the greatest apparent shift [29].

All three topographic apparent pixel offsets can be minimized by ortho-
rectifying the image with a DEM. The ortho-rectification process uses the
DEM to remove topographic distortions and will re-project the ellipsoidal po-
sition of a given pixel to one that better approximates its true coordinates on
the Earths surface. In our work, we have applied ortho-rectification techniques
to pre-process the images before registering them.

All images used in the Kunlun fault test cases are VNIR band 3n images
from ASTER level 1B scenes, which has already been through pre-process for
sensor artifacts by the ASTER corporation. This band was chosen for two
reasons:

• because it has the highest resolution, and
• because a sensor model is available [32], which describes the interior and

exterior orientations of the image ([18]).

The sensor model is required for the orthorectification process done using the
Leica Photogrammetry Suite in 19 ERDAS IMAGINE 8.7 [32].

ASTER VNIR 3b bands were not considered in the test cases due to reg-
istration problems. Orthorectification of the 3b images in ERDAS IMAGINE
was poor, and there were residual geometric pixel shifts of at least 20 pixels
(210 m). The poor orthorectification can be due to either excessive pointing
angle differences, or excessive variation in the viewing geometry.

The DEM used for orthorectification was the 90-m Shuttle Radar Topog-
raphy Mission (SRTM; www.jpl.nasa.gov/srtm) DEM. ENVI 4.0 software was
used to register the before and after images, and check the orthorectification
process done in ERDAS IMAGINE.
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5 How to Extend the Existing Image Registration
Techniques to Images Known with Low Accuracy

Problem

When we applied the above algorithm to detect the earthquake-caused shift
between the pre- and post-earthquake images, we did not get any meaning-
ful shift value. Specifically, the inverse Fourier transform P (x) of the cross-
correlation power spectrum looks random, and its maximum a was attained
at values which are very different from the actual shift.

Analysis of the problem

In the above algorithm, for every frequency ω, we compute the complex-valued
product F (ω) · F ′(ω) and then consider only the phase of this complex value
– i.e., equivalently, the value R(ω) – in the further computations.

Due to the uncertainty in the satellite geometry and the wobble of the
satellite, we only know the images with low accuracy. As a result, the cor-
responding Fourier transforms F (ω) and F ′(ω) can also be only determined
with low accuracy. So, for every spatial frequency ω, the product F (ω) ·F ′(ω)
can also be only determined with low accuracy. How does this low accuracy
translate into the accuracy with which we know R(ω)?

Let ε be the accuracy with which we know the value of the product. In
general, if we multiply a value x known with accuracy ∆x ≈ ε by a number λ,
the resulting new value y = λ · x is known with accuracy ∆y = λ ·∆x = λ · ε.
Similarly, if we divide the value x by a number λ, then the resulting new value
z = x/λ is known with accuracy ∆z = ∆x/λ ≈ ε/λ.

In our algorithm, the cross-correlation power spectrum R(ω) is obtained
by dividing the product F (ω) ·F ′(ω) by its magnitude |F (ω)| · |F ′(ω)|. Since
we know the product with accuracy ε, we thus know the value R(ω) with
accuracy ε/(|F (ω)| · |F ′(ω)|). As a result:

• for the frequencies ω for which the magnitude is high, we know the corre-
sponding value R(ω) with a reasonable accuracy;

• however, for the frequencies ω for which the magnitude is low, the the
corresponding value R(ω) is really inaccurate – all noise.

In the above algorithm, when we compute P (x) as the Fourier transform
of the function R(ω), we take all the values R(ω) with the same weight. In
effect, we are taking the average of several values, some known with reasonable
accuracy and some very inaccurate. Not surprisingly, the resulting average is
very inaccurate.

For example, if we have two measurements of the same quantity whose
actual value is 1.0,

• the first measurement is very accurate and results in 1.05, and
• the second measurement is way off and results in 5.61,
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then when we take the average, we get (1.05 + 5.61)/2 = 3.33 in which the
noisy values dominated the accurate ones.

How to make resulting estimate more accurate: an idea

In view of the above analysis, to make the measurements more accurate, we
should:

• assign less weight to less accurate values R(ω), i.e., values for which the
magnitude |F (ω)| · |F ′(ω)| is small, and

• assign more weight to more accurate values R(ω), i.e., values for which
the magnitude |F (ω)| · |F ′(ω)| is large.

The simplest way is to assign weight 0 to less accurate measurements and
weight 1 to more accurate measurements. In other words, the simplest way to
implement this idea is:

• to fix some threshold, and
• for all the frequencies for which the magnitude |F (ω)| · |F ′(ω)| is below

this threshold, set R(ω) to 0.

A natural idea is to select, as a threshold, a certain portion of the largest
(or mean) value of |F (ω)| · |F ′(ω)|. As a result, we arrive at the following
algorithm.

Registration algorithm for images that are known with low accuracy: first
attempt

To find the shift a between the two images:

• first, we apply FFT to the original images I(x) and I ′(x) and compute
their Fourier transforms F (ω) and F ′(ω);

• on the second step, we do the following:
– we find the mean value m of the product |F (ω)| · |F ′(ω)|;
– we set the threshold to be a certain portion of the mean, i.e., to α ·m

for some α > 0;
– for those frequencies for which |F (ω)| · |F ′(ω)| ≥ α · m, we compute

the value R(ω) by using the formula (17);
– for other frequencies, we set R(ω) = 0;

• on the third step, we apply the inverse FFT to the function R(ω) and
compute its inverse Fourier transform P (x);

• finally, on the fourth step, we determine the first approximation to the
desired shift a as the point for which |P (x)| takes the largest possible
value, and then do the interpolation by using formulas (18)–(19).

Empirically, the best value for the parameter α turned out to be 10−3.
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How to improve the above algorithm

We have mentioned that due to the inaccuracy, it is very difficult to detect the
lateral shift. In general, when measurements are not very accurate, a natural
way to increase the accuracy is to perform repeated measurements and then
average the measurement results. With respect to images, this means that
we have to consider more pixels, i.e., large parts of the compared image,
corresponding to larger sliding window size.

However, the problem is that the lateral shift differs from location to lo-
cation: its value decreases as we get farther away from the fault. So, when we
increase the window size, instead of processing several pixels with the same
shift (which would have helped), we instead bring together pixels correspond-
ing to different values of lateral shift.

Good news is that while the magnitude of the lateral shift is different at
different pixels, the direction of this shift remains largely the same. So, at the
first stage of our analysis, we take a large sliding window (larger that 75× 75
pixels, where 1 pixel is ≈ 15 m), and use the above algorithm to determine
the direction of the lateral shift.

Once the direction at different locations is determined, we can now take
smaller sliding windows (40×40 pixels), and determine the magnitudes of the
lateral shift. The directions can also be obtained from these smaller windows,
but these direction are determined from he analysis of fewer pixels and are,
thus, much less accurate than the directions obtained form the analysis of a
larger window. Thus, to get the best results, we combine the direction obtained
form the analysis of a larger window with the magnitude obtained from the
smaller window.

In other words, we need to apply the above algorithm twice:

• first, with a larger sliding window, to find the direction of the lateral shift;
• then, with a smaller sliding window, to find the shift’s magnitude.

Finally, we combine the direction obtained from a larger window with the
magnitude obtained from a smaller window. Thus, we arrive at the following
algorithm:

Registration algorithm for images that are known with low accuracy: final
description

To find the shift a between the two images at a given location x = (x1, x2),
we select the two window sizes δ < ∆. Then:

• First, we apply the above “first attempt” algorithm to subimages corre-
sponding to a larger box (window) [x1 − ∆, x1 + ∆] × [x2 − ∆,x2 + ∆]
around x. Based on the resulting shift a, we find the direction e def=

a
‖a‖

of the actual (unknown) lateral shift (here ‖a‖ def=
√

a2
1 + a2

2).
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• Then, we apply the above “first attempt” algorithm to subimages corre-
sponding to a smaller box (window) [x1−δ, x1 +δ]× [x2−δ, x2 +δ] around

x. Based on the resulting shift a, we find the shift’s magnitude M
def= ‖a‖.

• Finally, we combine the direction e obtained from a larger window with
the magnitude m obtained from a smaller window into the estimate M · e
for the desired shift.

This is the new FFT-based algorithm that we propose to use for registering
images know with low accuracy.

6 Results of Applying the New Image Registration
Algorithm

To test our new algorithm, we applied it to all three test zones. All test cases
display good results in the near field of the faulted area; the accuracy with
which we can determine the shift decreases as we move to distal areas.

Test Case 2 gives the best results, with a measured lateral displacement
of 4.5± 0.4 m with left-lateral slip and an average slip direction of 270◦. This
magnitude is similar to the 4.6-4.8 m displacement of a gulley measured by
Lin et al. [16] (site 2 in Table 2 from [16]), and the sense and slip direction
are consistent with the known trace and kinematics of the Kunlun fault.

Test Case 3 is fairly consistent in direction, with left lateral movement and
an average slip direction of 265◦. However, the magnitude obtained from this
analysis,≈ 8.4 m, is a much cruder approximation to the 5.7 m of displacement
measured by Lin et al. [16] (site 3 in Table 2). This could be attributed to the
long 13-month time separation window during which non-earthquake terrain
change occurred, such as changes in the water level in Kusai Hu lake.

Test Case 1 results in left-lateral slip with an azimuth of 268◦ in the
nearfield of the fault and a magnitude of ≈ 8.3 m. The sense of slip and
azimuth are consistent with field observations, but assessing the accuracy
of the resulting magnitude is less straightforward. The closest of the Lin et
al. [16] field sites is site 7. Several offset features were measured here, with
displacements ranging from 3.3 m on a road to 6.8 m on a stream channel.
The latter is similar, as is the field measurement at another nearby locality,
site 6, where Lin et al. [16] report 7.2 m of displacement on a stream channel.

7 Conclusions and Future Work

Main conclusion

Our results have shown that the new algorithm provides a good reconstruction
of shift between the two images.
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Using better DEM

Future work needed includes improving the pre-processing protocol. This im-
provement is needed in order to fully remove any residual apparent pixel
offsets and to optimize the true pixel offsets. This can be accomplished by
using a 30-m DEM instead of a 90-m DEM in the ortho-rectification process.
A higher-resolution DEM can be obtained from aerial photographs or LIDAR,
among other sources, but will require an investment of time and resources.
By using a DEM with a higher resolution, the elevation uncertainty can be
improved, thus lowering the apparent pixel offsets caused by parallax.

Comparing images of different type

Future work should also include applying the change detection procedures
developed in this thesis to heterogenous input imagery, for instance, a combi-
nation of an ASTER “after” image with a Landsat TM scene or aerial pho-
tographs as “before” images. By using a heterogonous pair of input imagery, a
greater number of possible image candidates can be used to do change detec-
tion. In addition, since Landsat images and aerial photographs are available
for times prior to the beginning of ASTER image acquisition, using hetero-
geneous datasets can also lengthen the time separation windows that can be
considered. This can be especially useful for monitoring terrain change due to
slow processes such as glacier movement. It can also make possible the study
of events that occurred before ASTER was launched.

Comparing images with gridded data sets

The algorithms desscribed in this paper should be able to detect lateral move-
ments in any kind of registered imagery. Thus, the possibility exists to apply
these methods to gridded gravity and other geophysical data.

Use redundancy of ASTER images

As an effort to improve our knowledge of ASTER attitude parameters and
to minimize residual apparent pixel offsets during ortho-rectification, as well
as improve the performance of the change detection techniques with ASTER
data, it may be possible to exploit the redundancy in the ASTER VNIR
imagery [29]. The redundancy provided by the ASTER is possible due to
its stereo capability, a feature which, given two ASTER scenes, essentially
provides four independent sets of images to process for terrain displacement.
Given a single “before” scene and a single “after” scene, there are a total of
four unique permutations of image pairs that can be used as input to a terrain
change detection algorithm. All else being equal, each permutation should
result in identical terrain change measurements. Differences in the estimates,
however, can be reconciled by optimization of poorly-constrained parameters
such as the satellite attitude (e.g., roll, pitch, and yaw).

We can also use the fact that the images are multi-spectra [3, 4] (see also
Appendix).
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Towards more accurate shift, rotation, and scaling

It is important to find the lateral shift between pre- and post-earthquake
images. Once this relative shift is determined, it is desirable to shift one of
the images to see what changes occurred.

The difficulty is that the shift is subpixel, so when we shift, we move away
from the original rectangular grid: the brightness values of the first image were
given on a grid, but the values of the shifted image are on the shifted points,
which are in between the points of the original grid. Thus, to adequately
compare the two images pixel-by-pixel, we must interpolate the brightness
values from the shifted grid points (at which we know the brightnesses of
the shifted first image) to the original grid point (at which we know the
brightnesses of the second image).

In the above text, we used bilinear interpolation to actually perform
the corresponding geometric transformation (shift, rotation, or scaling). This
methods is efficient – it requires only a few computations per pixel – but be-
cause of its localized character, it is not always accurate. It is well known that
the more points we use for interpolation, the better results we can achieve.
Ideally, interpolation should use all the available points. Such methods have
indeed been developed based on efficient FFT-based implementations of so-
called chirp-z transform – a generalization of Fourier transform [27]. It is
desirable to apply these methods to geosciences-related images.

Methods from [27] can perform shifts and scalings in an arbitrary rec-
tangular grid, but efficient rotation techniques are only available for the case
when we have a rectangular grid with exactly the same step sizes in two di-
mensions, i.e., when the grid is actually a square grid. For satellite images, it
is often not the case. To handle such situations, we must thus:

• first, interpolate from the original rectangular grid to the square grid;
• then, perform the rotation in the square grid, and
• finally, interpolate the rotated image back into the original rectangular

grid.

Towards explicit representation of interval and fuzzy uncertainty in images

In the current image processing, an image is represented as follows: for each
pixel x, we describe the approximate value Ĩ(x) of the brightness at this
pixel. It is desirable to describe not only this approximate value, but also the
accuracy with which we know this value.

For example, if for each pixel, we know the guaranteed upper bound ∆(x)
for the inaccuracy of the corresponding brightness value, this means that at
each pixel x, the actual (unknown) value of the brightness I(x) belongs to the
interval

I(x) = [I(x), I(x)] def= [Ĩ(x)−∆(x), Ĩ(x) + ∆(x)].

In a more realistic situation, instead of the guaranteed bound, we may have
different values which bound the difference ∆I(x) def= I(x)−Ĩ(x) with different
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degrees of certainty. In other words, for every pixel x, we have nested intervals
corresponding to different degrees of certainty – i.e., in effect, a fuzzy value
I(x). A fuzzy-valued image is thus simply a nested (layered) family of interval-
valued images.

How can we process such interval and fuzzy images? To transform (shift,
rotate, scale) an interval image [I(x), I(x)], it is sufficient to rotate the cor-
responding endpoint images I(x) and I(x). To transform a fuzzy image, it is
sufficient to rotate the corresponding interval images layer-by-layer.
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Appendix: Registration of Multi-Spectral Satellite
Images

Formulation of the problem

With the new generation of multi-spectral satellites, for each area, we have
several hundred images which correspond to different wavelengths. At present,
when we register two images, we only use one of the wavelengths and ignore
the information from the other wavelengths. It is reasonable to decrease the
registration error by using images corresponding to all possible wavelengths
in registration.

Similarly, in detecting the known text in colored web images, we would
like to take into consideration all color components.

In this appendix, we present an algorithm for such optimal registration.

Derivation of the new algorithm

For multi-spectral imaging, instead of a single image I(ω), we get several
images Ii(ω), 1 ≤ i ≤ n, which correspond to different wavelengths. So, we
have two groups of images:
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• the images Ii(ω) which correspond to one area, and
• the images I ′i(ω) which correspond to an overlapping area.

Let us first consider the case when two images differ only by some (unknown)
shift a. For every wavelength i, the corresponding two images Ii(x) and I ′i(x)
differ only by shift, i.e., I ′i(x) = Ii(x + a). Therefore, for every wavelength i,
their Fourier transforms

Fi(ω) =
1
2π

·
∫ ∫

Ii(x) · e−2π·i·(x·ω) dx1dx2,

F ′i (ω) =
1
2π

·
∫ ∫

I ′i(x) · e−2π·i·(x·ω) dx1dx2,

are related by the formula:

F ′i (ω) = e2π·i·(ω·a) · Fi(ω). (20)

In the ideal no-noise situation, all these equations are true, and we can de-
termine the value r = e2π·i·(ω·a) from any of these equations. In the real-life
situations, where noise is present, these equations (20) are only approximately
true, so we have the following problem instead: find r for which, for all i,

F ′i (ω) ≈ r · Fi(ω). (21)

and which satisfies the condition (7).
We would like to get the best estimate for r among all estimates which

satisfy the condition (7). To get the optimal estimate, we can use the Least
Squares Method, according to which, for each estimate r and for each i, we
define the error

Ei = F ′i (ω)− r · Fi(ω) (22)

with which the condition (21) is satisfied. Then, we find among all estimates
which satisfy the additional condition (7), a value r for which the sum of the
squares

|E1|2 + . . . + |En|2 = E1 · E∗
1 + . . . + En · E∗

n

of these errors is the smallest possible.
The square |Ei|2 of each error Ei can be reformulated as follows:

Ei · E∗
i = (F ′i (ω)− r · Fi(ω)) · (F ′∗i (ω)− r∗ · F ∗i (ω)

)
=

F ′i (ω)·F ′∗i (ω)−r∗ ·F ∗i (ω)·F ′i (ω)−r ·Fi(ω)·F ′∗i (ω)+r ·r∗ ·Fi(ω)·F ∗i (ω). (23)

We need to minimize the sum of these expressions under the condition (7).
For this conditional minimization, we will use the Lagrange multipliers

technique, which leads to the following unconditional minimization problem:

n∑

i=1

(
F ′i (ω) · F ′∗i (ω)− r∗ · F ∗i (ω) · F ′i (ω)−
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r · Fi(ω) · F ′∗i (ω) + r · r∗ · Fi(ω) · F ∗i (ω)
)
+

λ · (r · r∗ − 1) → min . (24)

Differentiating (24) relative to r∗, we get the following linear equation:

−
n∑

i=1

F ∗i (ω) · F ′i (ω) + r ·
n∑

i=1

Fi(ω) · F ∗i (ω) + λ · r = 0. (25)

From this equation, we conclude that

r =

n∑

i=1

F ∗i (ω) · F ′i (ω)

n∑

i=1

Fi(ω) · F ∗i (ω) + λ

. (26)

The coefficient λ can be now determined from the condition that the resulting

value r should satisfy the equation (7). The denominator
n∑

i=1

Fi(ω) ·F ∗i (ω)+λ

of the equation (26) is a real number, so instead of finding λ, it is sufficient to
find a value of this denominator for which |r|2 = 1. One can easily see that to
achieve this goal, we should take, as this denominator, the magnitude of the
numerator, i.e., the value

∣∣∣∣∣
n∑

i=1

F ∗i (ω) · F ′i (ω)

∣∣∣∣∣ . (27)

For this choice of a denominator, the formula (25) takes the following final
form:

r = R(ω) def=

n∑

i=1

F ∗i (ω) · F ′i (ω)

∣∣∣∣∣
n∑

i=1

F ∗i (ω) · F ′i (ω)

∣∣∣∣∣

. (28)

So, for multi-spectral images, in the presence of noise, instead of using the
exact ratio (4), we should compute, for every ω, the optimal approximation
(28). Hence, we arrive at the following algorithm:

A new algorithm for determining the shift between two multi-spectral images

If we have images Ii(ω) and I ′i(ω) which correspond to different wavelengths,
then, to determine the shift a between these two multi-spectral images, we do
the following:

• first, we apply FFT to the original images Ii(x) and I ′i(x) and compute
their Fourier transforms Fi(ω) and F ′i (ω);
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• on the second step, we compute the ratio (28) – setting the value to 0 if
the denominator is below the threshold;

• on the third step, we apply the inverse FFT to the ratio R(ω) and compute
its inverse Fourier transform P (x);

• finally, on the fourth step, we determine the first approximation to the
desired shift a as the point for which |P (x)| takes the largest possible
value, and perform the interpolation (18)–(19) to find the actual shift
with subpixel accuracy.

For rotation and scaling, we can use the same reduction to shift as for
mono-spectral images. As a result, we get the desired values of shift, rotation,
and scaling; hence, we get the desired registration.


