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Summary. In many practical situations, we are not satisfied with the accuracy of
the existing measurements. There are two possible ways to improve the measurement
accuracy:

• first, instead of a single measurement, we can make repeated measurements; the
additional information coming from these additional measurements can improve
the accuracy of the result of this series of measurements;

• second, we can replace the current measuring instrument with a more accurate
one; correspondingly, we can use a more accurate (and more expensive) measure-
ment procedure provided by a measuring lab – e.g., a procedure that includes
the use of a higher quality reagent.

In general, we can combine these two ways, and make repeated measurements with
a more accurate measuring instrument. What is the appropriate trade-off between
sample size and accuracy? This is the general problem that we address in this paper.

1 General formulation of the problem

We often need more accurate measurement procedures. Measure-
ments are never 100% accurate, there is always a measurement inaccuracy.

Manufacturers of a measuring instrument usually provide the information
about the accuracy of the corresponding measurements. In some practical
situations, however, we want to know the value of the measured quantity
with the accuracy which is higher than the guaranteed accuracy of a single
measurement.

Comment. Measurements are provided either by a measuring instrument or,
in situations like measuring level of pollutants in a given water sample, by a
measuring lab. Most problems related to measurement accuracy are the same,
whether we have an automatic device (measuring instrument) or operator-
supervised procedure (measuring lab). In view of this similarity, in the fol-
lowing text, we will consider the term “measuring instrument” in the general
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sense, so that the measuring lab is viewed as a particular case of such (general)
measuring instrument.

Two ways to improve the measurement accuracy: increasing sample
size and improving accuracy. There are two possible ways to improve the
measurement accuracy:

• first, instead of a single measurement, we can make repeated measurements;
the additional information coming from these additional measurements can
improve the accuracy of the result of this series of measurements;

• second, we can replace the current measuring instrument with a more
accurate one; correspondingly, we can use a more accurate (and more ex-
pensive) measurement procedure provided by a measuring lab – e.g., the
procedure that includes the use of a higher quality reagent.

In general, we can combine these two ways, and make repeated measurements
with a more accurate measuring instrument.

Problem: finding the best trade-off between sample size and accu-
racy. What guidance shall we give to an engineer in this situation? Shall she
make repeated measurements with the original instrument? shall she instead
purchase a more accurate measuring instrument and make repeated measure-
ments with this new instrument? How more accurate? how many measurement
should we perform? In other words, what is the appropriate trade-off between
sample size and accuracy?

This is the general problem that we address in this paper.

2 In different practical situations, this general problem
can take different forms

There are two different situations which, crudely speaking, correspond to en-
gineering and to science.

In most practical situations – in engineering, ecology, etc. – we know what
accuracy we want to achieve. In engineering, this accuracy comes, e.g., from
the tolerance with which we need to guarantee some parameters of the man-
ufactured object. To make sure that these parameters fit into the tolerance
intervals, we must measure them with the accuracy that is as good as the tol-
erance. For example, if we want to guarantee, e.g., the resistance of a certain
wire does not deviate from its nominal value by more than 3%, then we must
measure this resistance with an accuracy of at least 3% (or better).

In ecological measurements, we want to make sure that the measured quan-
tity does not exceed the required limit. For example, if we want to guarantee
that the concentration of a pollutant does not exceed 0.1 units, then we must
be able to measure this concentration with an accuracy somewhat higher than
0.1. In such situations, our objective is to minimize the cost of achieving this
accuracy.
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In science, we often face a different objective:

• we have a certain amount of funding allocated for measuring the value of
a certain quantity;

• within the given funding limits, we would like to determine the value of
the measured quantity as accurately as possible.

In other words:

• In engineering situations, we have a fixed accuracy, and we want to mini-
mize the measurement cost.

• In scientific situations, we have a fixed cost, and we want to maximally
improve the measurement accuracy.

3 A realistic formulation of the trade-off problem

Traditional engineering approach. The traditional engineering approach
to solving the above problem is based on the following assumptions – often
made when processing uncertainty in engineering:

• that all the measurement errors are normally (Gaussian) distributed
known standard deviations σ;

• that the measurement errors corresponding to different measurement are
independent random variables; and

• that the mean value ∆s of the measurement error is 0.

Under these assumptions, if we repeat a measurement n times and compute
the arithmetic average of n results, then this average approximates the actual
value with a standard deviation

σ√
n

. So, under the above assumptions, by

selecting appropriate large number of iterations n, we can get make measure-
ment errors as small as we want.

This approach – and more general statistical approach – has been actively
used in many applications to science in engineering problems; see, e.g., [1, 2,
6, 8].

Limitations of the traditional approach. In practice, the distributions
are often Gaussian and independent; however, the mean (= systematic error)
∆s is not necessarily 0. Let us show this if we do not take systematic error
into account, we will underestimate the resulting measurement inaccuracy.

Indeed, suppose that we have a measuring instrument about which we
know that its measurement error cannot exceed 0.1: |∆x| ≤ 0.1. This means,
e.g., that if, as a result of the measurement, we got the value x̃ = 1.0, then
the actual (unknown) value x (= x̃−∆x) of the measured quantity can take
any value from the interval [1.0− 0.1, 1.0 + 0.1] = [0.9, 1.1].

If the mean of the measurement error (i.e., the systematic error compo-
nent) is 0, then we can repeat the measurement many times and, as a re-
sult, get more and more accurate estimates of x. However, if – as is often
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the case – we do not have any information about the systematic error, it is
quite possible that the systematic error is actually equal to 0.07 (and the
random error is negligible in comparison with this systematic error). In this
case, the measured value 1.0 means that the actual value of the measured
quantity was x = 1.0 − 0.07 = 0.93. In this case, we can repeat the mea-
surement many times, and every time, the measurement result will be equal
to ≈ x + ∆s = 0.93 + 0.01 = 1.0. The average of these values will still be
approximately equal to 1.0 – so, no matter how many times we repeat the
measurement, we will get the exact same measurement error 0.07.

In other words, when we are looking for a trade-off between sample size
and accuracy, the traditional engineering assumptions can result in misleading
conclusions.

A more realistic description of measurement errors. We do not know
the actual value of the systematic error ∆s – if we knew this value, we could
simply re-calibrate the measuring instrument and thus eliminate this system-
atic error.

What we do know are the bounds on the systematic error. Specifically, in
measurement standards (see, e.g., [7]), we are usually provided with the upper
bound ∆ on the systematic error – i.e., with a value ∆ for which |∆s| ≤ ∆.
In other words, the only information that we have about the systematic error
∆s is that it belongs to the interval [−∆,∆].

Resulting formulas for the measurement accuracy. Under these as-
sumptions, what is the guaranteed accuracy of a single measurement made by
the measuring instrument?

Although formally, a normally distributed random variable can take any
value from −∞ to +∞, in reality, the probability of value which are too
far away from the average is practically negligible. In practice, it is usually
assumed that the values which differ from the average a by more than k0 · σ
are impossible – where the value k0 is determined by how confident we want
to be:

• 95% confidence corresponds to k0 = 2,
• 99.9% corresponds to k0 = 3, and
• confidence 100%− 10−6% corresponds to k0 = 6.

Thus, with selected confidence, we know that the measurement error is
between ∆s − k0 · σ and ∆s + k0 · σ. Since the systematic error ∆s can take
any value from −∆ to +∆, the smallest possible value of the overall error is
−∆− k0 · σ, and the largest possible value of the overall error is ∆ + k0 · σ.

Thus, for a measuring instrument with a standard deviation σ of the ran-
dom error component and a upper bound ∆ on the systematic error compo-
nent, the overall error is bounded by the value ∆ + k0 · σ, where the value k0

is determined by the desired confidence level.

Resulting formulas for the accuracy of a repeated measurement.
When we repeat the same measurement n times and take the average of n
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measurement results, the systematic error remains the same, while the stan-
dard deviation of the random error decreases

√
n times. Thus, after n mea-

surements, the overall error is bounded by the value ∆ + k0 · σ√
n

.

So, we arrive at the following formulation of the trade-off problem.

Trade-off problem for engineering. In the situation when we know the
overall accuracy ∆0, and we want to minimize the cost of the resulting mea-
surement, the trade-off problem takes the following form:

Minimize n · F (∆,σ) under the constraint ∆ + k0 · σ√
n
≤ ∆0, (1)

where F (∆,σ) is the cost of a single measurement performed by a measuring
instrument whose systematic error is bounded by ∆ and whose random error
has a standard deviation σ.

Trade-off problem for science. In the situation when we are given the limit
F0 on the cost, and the problem is to achieve the highest possible accuracy
within this cost, we arrive at the following problem

Minimize ∆ + k0 · σ√
n

under the constraint n · F (∆,σ) ≤ F0. (2)

4 Solving the trade-off problem in the general case

Mathematical comment. The number of measurement n is a discrete variable.
In general, optimization with respect to discrete variables requires much more
computations than continuous optimization (see, e.g., [4]). Since our formula-
tion is approximate anyway, we will treat n as a real-valued variable – with the
idea that in a practical implementation, we should take, as the actual sample
size, the closest integer to the corresponding real number solution nopt.

Towards resulting formulas. For both constraint optimization problems,
the Lagrange multiplier method leads to the following unconstraint optimiza-
tion problem:

n · F (∆,σ) + λ ·
(

∆ + k0 · σ√
n
−∆0

)
→ min

∆,σ,n
, (3)

where λ can be determined by one of the formulas

∆ + k0 · σ√
n

= ∆0, n · F (∆,σ) = F0. (4)

Equating the derivatives of the objective function (with respect to the un-
knowns ∆, σ, and n) to 0, we conclude that

n · ∂F

∂∆
+ λ = 0; n · ∂F

∂σ
+ λ · k0√

n
= 0; F − 1

2
· λ · k0 · σ

n3/2
= 0. (5)
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Substituting the expression for λ from the first equation into the second one,
we conclude that

n = k2
0 ·

(∂F/∂∆)2

(∂F/∂σ)2
. (6)

Substituting these expression into the other equations from (5) and into the
equations (4), we get the following non-linear equations with two unknowns
∆ and σ:

F +
1
2
· σ · ∂F

∂σ
= 0; (7)

∆ +
σ · (∂F/∂σ)

∂F/∂∆
= ∆0; k2

0 ·
(∂F/∂∆)2

(∂F/∂σ)2
· F = F0. (8)

So, we arrive at the following algorithm:

General formulas: results. For each of the optimization problems (1) and
(2), to find the optimal accuracy values ∆ and σ and the optimal sample size
n, we do the following:

• First, we determine the optimal accuracy, i.e., the optimal values of ∆ and
σ, by solving a system of two non-linear equations with two unknowns ∆
and σ: the equation (7) and one of the equations (8) (depending on what
problem we are solving).

• After that, we determine the optimal sample size n by using the for-
mula (6).

For practical engineering problems, we need more explicit and easy-
to-use recommendations. The above formulas provide a general theoret-
ical solution to the trade-off problem, but to use them in practice, we need
more easy-to-use recommendations. In practice, however, we do not have the
explicit formula F (∆,σ) that determines how the cost of the measurement
depends on its accuracy. Therefore, to make our recommendations more prac-
tically useful, we must also provide some guidance on how to determine this
dependence – and then use the recommended dependence to simply the above
recommendations.

5 How Does the Cost of a Measurement Depend on Its
Accuracy?

Two characteristics of uncertainty: ∆ and σ. In our description, we use
two parameters to characterize the measurement’s accuracy: the upper bound
∆ on the systematic error component and the standard deviation σ of the
random error component.

It is difficult to describe how the cost of a measurement depends on
σ. The standard deviation σ is determined by the noise level, so decreasing σ
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requires a serious re-design of the measuring instrument. For example, to get
a standard measuring instrument, one thing designers usually do is place the
instrument in liquid helium so as to eliminate the thermal noise as much as
possible; another idea is to place the measuring instrument into a metal cage,
to eliminate the effect of the outside electromagnetic fields on the measuring
instrument’s electronics.

Once we have eliminated the obvious sources of noise, eliminating a new
source of noise is a creative problem, requiring a lot of ingenuity, and it is
difficult to estimate how the cost of such decrease depends on σ.

The inability to easily describe the dependence of cost on σ may not
be that crucial. The inability to easily handle the characteristic σ of the
random error component may not be so bad because, as we have mentioned,
the random error component is the one that can be drastically decreased by
increasing the sample size – in full accordance with the traditionally used
simplifying engineering assumptions about uncertainty.

As we have mentioned, in terms of decreasing the overall accuracy, it is
much more important to decrease the systematic error component, i.e., to
decrease the value ∆. Let us therefore analyze how the cost of a measurement
depends on ∆.

How we can reduce ∆: reminder. As we have mentioned, we can decrease
the characteristic ∆ of the systematic error component by calibrating our
measuring instrument against the standard one.

After N repeated measurements, we get a systematic error ∆s whose
standard deviation is ≈ σ/

√
N (and whose distribution, due to the Cen-

tral Limit Theorem, is close to Gaussian). Thus, with the same confidence
level as we use to bound the overall measurement error, we can conclude that
|∆s| ≤ k0 · σ/

√
N.

Calibration is not a one-time procedure. To properly take calibration
into account, it is important to recall that calibration is not a one-time pro-
cedure. Indeed, most devices deteriorate with time. In particular, measuring
instruments, if not periodically maintained, become less and less accurate.
Because of this, in measurement practices, calibration is not a one-time pro-
cedure, it needs to be done periodically.

How frequently do we need to calibrate a device? The change of ∆s with
time t is slow and smooth. A smooth dependence can be represented by a
Taylor series ∆s(t) = ∆s(0) + k · t + c · t2 + . . . In the first approximation,
we can restrict ourselves to the main – linear – term (linear trend) in this
expansion, and thus, in effect, assume that the change of ∆s with time t is
linear.

Thus, if by calibrating the instrument, we guaranteed that |∆s| ≤ ∆, then
after time t, we can only guarantee that |∆s| + k · t ≤ ∆. Once the upper
bound on ∆s reaches the level that we want not to exceed, this means that
a new calibration is in order. Usually (see, e.g., [7]), to guarantee the bound
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∆ throughout the entire calibration cycle, we, e.g., initially calibrate it to be
below ∆/2, and then re-calibrate at a time t0 when ∆/2 + k · t0 = ∆. In such
a situation, the time t0 between calibrations is equal to t0 = ∆/(2 · k).

How the calibration-based reduction procedure translates into the
cost of a measurement: the main case. As we have just mentioned, the
way to decrease ∆ is to calibrate the measuring instrument. Thus, the result-
ing additional cost of a measurement comes from the cost of this calibration
(spread over all the measurement performed between calibrations).

Each calibration procedure consists of two stages:

• first, we transport the measuring instrument to the location of a standard
– e.g., to the National Institute of Standard and Technology (NIST) or
one of the regional standardization centers – and set up the comparison
measurements by the tested and the standard instruments;

• second, the we perform the measurements themselves.

Correspondingly, the cost of calibration can be estimated as the sum of the
costs of there two stages.

The standard measuring instrument is usually a very expensive operation.
So, setting it up for comparison with different measuring instruments requires
a lot of time and a lot of adjustment. Once the set-up is done, the second
stage is fast and automatic – and therefore not that expensive.

As a result, usually, the cost of the first stage is the dominating factor. So,
we can reasonably assume that the cost of the calibration is just the cost of
the set-up – i.e., the cost of the first stage of the calibration procedure.

By definition, the set-up does not depend on how many times N we per-
form the comparison measurements. Thus, in the first approximation, we can
simply assume that each calibration requires a flat rate f0.

The interval between time calibrations is t0 = ∆/(2 · k), then during a
fixed period of time T0 (e.g., 10 years), we need

T0

t0
=

T0

∆/(2 · k)
=

2 · k · T0

∆

calibrations. Multiplying this number by the cost f0 of each calibration, we
get the overall cost of all the calibrations performed during the fixed time

T0 as
2 · k · T0 · f0

∆
. Finally, dividing this cost by the estimated number N0 of

measurements performed during the period of time T0, we estimate the cost
F (∆) of an individual measurement as

F (∆) =
c

∆
, (9)

where we denoted
c

def=
2 · k · T0 · f0

N0
. (10)
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Comment. The above formula was first described, in a somewhat simplified
form, in [3].

This formula is in good accordance with chemistry-related measure-
ments. It is worth mentioning that the dependence c ∼ 1/∆ also occurs in
measurements related to chemical analysis. Indeed, in these measurements,
the accuracy of the measurement result is largely determined by the qual-
ity of the reagents, i.e., mainly, by the concentration level δ of the unwanted
chemicals (pollutants) in a reagent mix. Specifically, the maximum possible
error ∆ is proportional to this concentration δ, i.e., ∆ ≈ c0 · δ.

According to [9], the cost of reducing pollutants to a level δ is proportional
to 1/δ. Since the accuracy ∆ is proportional to δ, the dependence of the cost
of the accuracy is also inverse proportional to ∆, i.e., F (∆) = c/∆ for some
constant c.

This formula is in good accordance with actual prices of different
measurements. This dependence is in good agreement by the experimen-
tal data on the cost of measurements of chemical-related measurements. For
example, in a typical pollution measurement, a measurement with the 25%
accuracy costs ≈ $200, while if we want to get 7% accuracy, then we have to
use a better reagent grade in our measurements which costs between $500 and
$1,000. Here, the 3–4 times increase in accuracy (i.e., 3–4 times decrease in
measurement error) leads to approximately the same (4–5) times increase in
cost – which is indeed in good accordance with the dependence F (∆) ≈ c/∆.

How the calibration-based reduction procedure translates into the
cost of a measurement: cases of more accurate measurements. In de-
riving the formula F (∆) ≈ c/∆, we assumed that the cost of actually perform-
ing the measurements with the standard instrument is much smaller than the
cost of setting up the calibration experiment. This is a reasonable assumption
if the overall number of calibration-related measurement N is not too large.

How many measurement do we need? After N measurements, we get the
accuracy ∆ = k0 · σ/

√
N . Thus, for a measuring instrument with standard

deviation σ, if we want to achieve the systematic error level ∆, we must use

N = k0 · σ2

∆2
(11)

measurements.
So, if we want to use the calibration procedure to achieve higher and

higher accuracy – i.e., smaller and smaller values of ∆ – we need to perform
more and more calibration-related measurements. For large N , the duration
of the calibration-related measurements exceeds the duration of the set-up.
Since the most expensive part of the calibration procedure is the use of the
standard measuring instrument, the cost of this procedure is proportional to
the overall time during which we use this instrument. When N is large, this
time is roughly proportional to N .
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In this case, instead of a flat fee f0, the cost of each calibration becomes
proportional to N , i.e., equal to f1 ·N , where f1 is the cost per time of using
the standard measuring instrument multiplied by the time of each calibration
measurement. Due to the formula (11), the resulting cost of each calibration is

equal to f1 ·k0 · σ2

∆2
. To get the cost of a single measurement, we must multiply

this cost by the number of calibrations
2 · k · T0

∆
required during the time

period T0, and then divide by the typical number of measurements performed
during this period of time. As a result, the cost of a single measurement

becomes
const
∆3

.

The cost of measurements beyond calibration: general discussion. In
many scientific cutting-edge experiments, we want to achieve higher accuracy
than was possible before. In such situations, we cannot simply use the existing
standard measuring instrument to calibrate the new one, because we want to
achieve the accuracy that no standard measuring instrument has achieved
earlier.

In this case, how we can increase the accuracy depends on the specific
quantity that we want to measure.

The cost of measurements beyond calibration: example. For example,
in radioastrometry – the art of determining the locations of celestial objects
from radioastronomical observation – the accuracy of a measurement by a
single radio telescope is ∆ ≈ λ/D, where λ is the wavelength of the radio-
waves on which we are observing the source, and D is the diameter of the
telescope; see, e.g., [10]. For a telescope of a linear size D, just the amount of
material is proportional to its volume, i.e., to D3; the cost F of designing a
telescope is even higher – it is proportional to D4. Since D ≈ const/∆, in this
case, we have F (∆) ≈ const/∆4.

The cost of measurements beyond calibration: power laws. The above
dependence is a particular case of the power law F (∆) ≈ const/∆α. Power
laws are, actually, rather typical descriptions of the dependence of the cost of
an individual measurement on its accuracy.

In [5], we explain why in the general case, power laws are indeed reasonable
approximation: crudely speaking, in the absence of a preferred value of the
measured quantity, it is reasonable to assume that the dependence does not
change if we change the measuring unit (i.e., that it is scale invariant), and
power laws are the only scale-invariant dependencies.

Comment. The same arguments about scale invariance apply when we try to
find out how the cost of a measurement depends on the standard deviation.
So, it is reasonable to assume that this dependence is also described by a
power law F (σ) ≈ const/σβ for some constant β.
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6 Trade-off between accuracy and sample size in
different cost models

Let us plug in the above cost models into the above general solution for the
tradeoff problem and find out what is the optimal trade-off between accuracy
and sample size in the above cost models.

Since the above cost models only describe the dependence of the cost of ∆
and n, we will assume that the characteristic σ of the random error component
is fixed, so we can only select the accuracy characteristic ∆ and the sample
size n.

Basic cost model: engineering situation. Let us start with the basic cost
model, according to which F (∆) = c/∆. Within this model, we can explicitly
solve the above system of equations. As a result, for the engineering situation,
we conclude that

nopt =
9 · k2

0 · σ2

4 ·∆2
0

; ∆opt =
1
3
·∆0. (12)

Observation. In this case, the overall error bound ∆0 is the sum of the
bounds coming from two error components:

• the bound ∆0 that comes from the systematic error component, and
• the bound k0 · σ√

n
that comes from the random error component.

In the optimal trade-off, the first component is equal to 1/3 of the overall error
bound, and therefore, the second component is equal to 2/3 of the overall
error bound. As a result, we conclude that when the error comes from several
error components, in the optimal trade-off, these error components are of
approximately the same size.

Heuristic consequence of this observation. As a result of this qualitative
idea, it is reasonable to use the following heuristic rule when looking for a good
(not necessarily optimal) trade-off: split the overall error into equal parts.

In the above example, this would mean taking ∆ = (1/2) ·∆0 (and, corre-
spondingly, k0 · σ√

n
= (1/2) ·∆0) instead of the optimal value ∆ = (1/3) ·∆0.

How non-optimal is this heuristic solution?
For the optimal solution ∆ = (1/3)·∆0, the resulting value of the objective

function (1) (representing the overall measurement cost) is
27
4
· k2

0 · σ2 · c
∆2

0

,

while for ∆ = (1/2) ·∆0, the cost is 8 · k2
0 · σ2 · c

∆2
0

– only ≈ 20% larger.

If we take into account that all our models are approximate, this means
that the heuristic trade-off solution is practically as good as the optimal one.

Basic cost model: science situation. In the science situation (2), we get
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nopt =
(

F0 · k0 · σ
2 · c

)2/3

; ∆opt =
nopt · c

F0
. (13)

Cases of more accurate and cutting-edge measurements. When
F (∆) = c/∆α, for the engineering case, we get

nopt =
(α + 2)2 · k2

0 · σ2

4 ·∆2
0

; ∆0 =
α

2 + α
·∆0.

For the science case,

nopt =
(

F0

c

)2/(2+α)

·
(

k0 · α
2

)(2α)/(2+α)

; ∆opt =
α

2
· k0 · σ√

nopt
.

In both cases, the error bound coming from the systematic error component
is approximately equal to the error bound coming from the random error
component.

Conclusion

In many practical situations, we are not satisfied with the accuracy of the
existing measurements. There are two possible ways to improve the measure-
ment accuracy. First, instead of a single measurement, we can make repeated
measurements; the additional information coming from these additional mea-
surements can improve the accuracy of the result of this series of measure-
ments. Second, we can replace the current measuring instrument with a more
accurate one; correspondingly, we can use a more accurate (and more expen-
sive) measurement procedure provided by a measuring lab – e.g., a procedure
that includes the use of a higher quality reagent. In general, we can com-
bine these two ways, and make repeated measurements with a more accurate
measuring instrument.

What is the appropriate trade-off between sample size and accuracy? Tra-
ditional engineering approach to this problem assumes that we know the exact
probability distribution of all the measurement errors. In many practical sit-
uations, however, we do not know the exact distributions. For example, we
often only know the upper bound on the corresponding measurement (or esti-
mation) error; in this case, after the measurements, we only know the interval
of possible values of the quantity of interest. In the first part of this paper,
we show in such situations, traditional engineering approach can sometimes
be misleading, so for interval uncertainty, new techniques are needed. In the
remainder of this paper, we describe proper techniques for achieving optimal
trade-off between sample size and accuracy under interval uncertainty.
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