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Summary. Most traditional examples of fuzziness come from the analysis of com-
monsense reasoning. When we reason, we use words from natural language like
“young”, “well”. In many practical situations, these words do not have a precise
true-or-false meaning, they are fuzzy. One may therefore be left with an impres-
sion that fuzziness is a subjective characteristic, it is caused by the specific way our
brains work.

However, the fact that that we are the result of billions of years of successful
adjusting-to-the-environment evolution makes us conclude that everything about us
humans is not accidental. In particular, the way we reason is not accidental, this
way must reflect some real-life phenomena – otherwise, this feature of our reasoning
would have been useless and would not have been abandoned long ago.

In other words, the fuzziness in our reasoning must have an objective explanation
– in fuzziness of the real world.

In this paper, we first give examples of objective real-world fuzziness. After these
example, we provide an explanation of this fuzziness – in terms of cognizability of
the world.

1 Introduction

One of the main ideas behind Zadeh’s fuzzy logic and its applications is that
everything is a matter of degree.

We are often accustomed to think that every statement about a physical
world is true or false:

• that an object is either a particle or a wave,
• that a person is either young or not,
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• that a person is either well or ill,

but in reality, we sometimes encounter intermediate situations.
That everything is a matter of degree is a convincing empirical fact, but

a natural question is: why? How can we explain this fact?
This is what we will try to do in this paper: come up with a theoretical

explanation of this empirical fact.
Most traditional examples of fuzziness come from the analysis of com-

monsense reasoning. When we reason, we use words from natural language
like “young”, “well”. In many practical situations, these words do not have a
precise true-or-false meaning, they are fuzzy. One may therefore be left with
an impression that fuzziness is a subjective characteristic, it is caused by the
specific way our brains work.

However, the fact that that we are the result of billions of years of success-
ful adjusting-to-the-environment evolution makes us conclude that everything
about us humans is not accidental. In particular, the way we reason is not
accidental, this way must reflect some real-life phenomena – otherwise, this
feature of our reasoning would have been useless and would not have been
abandoned long ago.

In other words, the fuzziness in our reasoning must have an objective
explanation – in fuzziness of the real world.

In this paper, we first give examples of objective real-world fuzziness. Af-
ter these example, we provide an explanation of this fuzziness – in terms of
cognizability of the world.
Comment. Some of our results first appeared in the conference papers [4, 16].

2 Examples of Objective “Fuzziness”

Fractals. The notion of dimension has existed for centuries. Already the
ancient researchers made a clear distinction between 0-dimensional objects
(points), 1-dimensional objects (lines), 2-dimensional objects (surfaces), 3-
dimensional objects (bodies), etc.

In all these examples, dimension is a natural number: 0, 1, 2, 3, . . .
Since the 19th century, mathematicians have provided a mathematical

extension of the notion of dimension that allowed them to classify some weird
mathematical sets as being of fractional (non-integer) dimension, but for a
long time, these weird sets remained anomalies.

In the 1970s, B. Mandlebrot noticed that actually, many real-life objects
have fractional dimension, ranging from the shoreline of England to the shape
of the clouds and mountains to noises in electric circuits (to social phenomena
such as stock prices). He called such sets of fractional (non-integer) dimension
fractals; see, e.g., [11, 12, 13].

It is now clear that fractals play an important role in nature. So, what
we originally thought of as an integer-valued variable turned out to be real-
valued.
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Quantum physics. Until the 19th century, physical phenomena were described
by classical physics. In classical physics, some variables are continuous, some
are discrete.

For example, the coordinates and velocities of particles usually take con-
tinuous values. However, if we are interested in stable states or periodic tra-
jectories, we often end up with a discrete set of stable states.

This discreteness underlies most engineering implementations of comput-
ers: to represent 0 or 1, we select an object with 2 possible states, and use one
of these states to represent 0 and another to represent 1.

In the 20th century, however, it turned out that a more adequate descrip-
tion of the physical world comes from quantum physics. One of the peculiar
features of quantum physics is the so-called superposition principle (see, e.g.,
[2]) according to which with every two states 〈0| and 〈1|, it is also possible to
have “intermediate” states (superpositions) c0 · 〈0| + c1 · 〈1| for all complex
values c0 and c1 for which |c0|2 + |c1|2 = 1.

So, what we originally thought of as an integer-valued variable turned out
to be real-valued.

Comment. It is worth mentioning that these quantum combinations of 0 and
1 states are not only happening in real life, but, as it was discovered in the
1990s, their use can drastically speed up computations. For example:

• we can search in an unsorted list of n elements in time
√

n – which is
much faster than the time n which is needed on non-quantum computers
[6, 7, 18];

• we can factor a large integer in time which does not exceed a polynomial
of the length of this integer – and thus, we can break most existing crypto-
graphic codes like widely used RSA codes which are based on the difficulty
of such a factorization on non-quantum computers [18, 21, 22].

These techniques form the basis of quantum computing; see, e.g., [18].

Fractional charges of quarks. In the late 19th century and early 20th century,
it was experimentally confirmed that seemingly continuous matter is actually
discrete: it consists of molecules, molecules consist of atoms, and atoms consist
of elementary particles.

A part of this confirmation came from an experimental discovery that all
electric charges are proportional to a single charge – which was later revealed
to be equal to the charge of an electron.

Based on this proportionality, physicists concluded that many observed
elementary particles ranging from (relatively) stables particles such as protons
and neutrons to numerous unstable ones – like many mesons and baryons
discovered in super-collides and in cosmic rays – cannot be further decomposed
into “more elementary” objects.

In the 1960s, M. Gell-Mann [2, 5, 20] discovered that if we allow parti-
cles with fractional electronic charge, then we can describe protons, neutrons,
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mesons, and baryons as composed of 3 (now more) even more elementary par-
ticles called quarks. At first, quarks were often viewed as purely mathematical
constructions, but experiments with particle-particle collisions revealed that,
within a proton, there are three areas (partons) where the reflection seems to
be the largest – in perfect accordance with the fact that in the quark model,
a proton consists of exactly three quarks.

So, what we originally thought of as an integer-valued variable turned out
to be real-valued.

There exist other examples of objective “fuzziness”. In physics, there are many
other examples when what we originally thought of as an integer-valued vari-
able turned out to be real-valued. In this paper, we just described the most
well known ones.

3 Our Explanation of Why Physical Quantities
Originally Thought to Be Integer-Valued Turned out to
Be Real-Valued: Main Idea

In philosophical terms, what we are doing is “cognizing” the world, i.e., under-
standing how it works and trying to predict consequences of different actions
– so that we will be able to select an action which is the most beneficial for
us.

Of course, our knowledge is far from complete, there are many real-world
phenomena which we have not cognized yet – and many philosophers believe
that some of these phenomena are not cognizable at all.

If a phenomenon is not cognizable, there is nothing we can do about it.
What we are interested in is phenomena which are cognizable. This is what
we will base our explanation on – that in such phenomena, it is reasonable to
expect continuous-valued variables, i.e., to expect that properties originally
thought to be discrete are actually matters of degree.

4 First Explanation: Gödel’s Theorem vs. Tarski’s
Algorithm

Gödel’s theorem: a brief reminder. Our first explanation of “objective fuzzi-
ness” is based on the historically first result in which something was actually
proven to be not cognizable – the well-known 1931 Gödel’s theorem; see, e.g.,
[3].

This theorem can be formulated in terms of arithmetic. Specifically, we
have variables which run over natural numbers 0, 1, 2, . . . A term is anything
that can be obtained from these variables and natural-valued constants by
using addition and multiplication, e.g., 2 · x · y + 3 · z (subtraction is also
allowed).
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Elementary formulas are defined as expressions of the type t = t′, t < t′,
t > t′, t ≤ t′, t ≥ t′, and t 6= t′ for some terms t and t′. Examples are
2 · x · y + 3 · z = 0 or x < y + z.

Finally, a formula is anything which is obtained from elementary formulas
by using logical connectives “and” (&), “or” (∨), “implies” (→), “not” (¬),
and quantifiers “for all x” (∀x) and “there exists x” (∃x). Example:

∀x∀y(x < y → ∃z(y = x + y)).

Many statements about the physical world can be formulated in terms of
such formulas. Our objective is therefore to find out whether a given formula
is true or false.

Gödel’s theorem states that no algorithm is possible that would, given
a formula, check whether this formula is true or false. In other words, if we
allow variables with discrete values, then it is not possible to have an algorithm
which would solve all the problems.

Tarksi’s result. In the 1940s, another well-known logician, Alfred Tarski,
raised an interesting question: what if we only allow continuous variables?
In other words, what if we consider the same formulas as Gödel considered,
but we change their interpretation: now every variable can take arbitrary real
values. It turns out that in this case, it is possible to have an algorithm that,
given a formula, checks whether this formula is true or false. [23].

Conclusion. Thus, in a cognizable situations, we cannot have variables which
only take discrete values – these variables must be able to take arbitrary real
values.

Comment. It is worth mentioning that the original Tarski’s algorithm required
an unrealistically large amount of computation time; however, later, faster,
practically useful algorithms have been invented; see, e.g., [1, 14].

5 Second Explanation: Efficient Algorithms vs.
NP-Hardness

Not all algorithms are practical. Our first explanation of continuity (and
“fuzziness”) was that with the discrete variables, we cannot have a deciding
algorithm, but with continuous variables, we can.

The existence of an algorithm is necessary for cognition, but not sufficient.
It is well known that some theoretical algorithms are not practical at all. For
example, if an algorithm requires an exponential number of computational
steps 2n on an input of size n, this means that for inputs of a reasonable
size n ≈ 300− 400, the required computation time exceeds the lifetime of the
Universe.
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Feasible vs. non-feasible algorithms. There is still no perfect formalization of
this difference between “practical” (feasible) and impractical (non-feasible)
algorithms. Usually:

• algorithms for which the computation time tA(x) is bounded by some
polynomial P (n) of the length n = len(x) of the input (e.g., linear-time,
quadratic-time, etc.) are practically useful, while

• for practically useless algorithms, the computation time grows with the
size of the input much faster than a polynomial.

In view of this empirical fact, in theoretical computer science, algorithms are
usually considered feasible if their running time is bounded by a polynomial
of n. The class of problems which can be solved in polynomial time is usually
denoted by P; see, e.g., [19].

Notion of NP-hardness. Not all practically useful problems can be solved in
polynomial time. To describe such problems, researchers have defined several
more general classes of problems. One of the most well known classes is the
class NP. By definition, this class consists of all the problems which can be
solved in non-deterministic polynomial time – meaning that if we have a
guess, we can check, in polynomial time, whether this guess is a solution to
our problem.

Most computer scientists believe that NP 6=P, i.e., that some problems from
the class NP cannot be solved in polynomial time. However, this inequality
has not been proven, it is still an open problem. What is known is that some
problems are NP-hard, i.e., any problem from the class NP can be reduced to
each of these problems in polynomial time. One of such NP-hard problems is
the problem SAT of propositional satisfiability: given a propositional formula
F , i.e., a formula obtained from Boolean (yes-no) variables x1, . . . , xn by using
&, ∨, and ¬, check whether there exist values x1, . . . , xn which make this
formula true.

NP-hardness of SAT means that if NP 6=P (i.e., if at least one problem from
the class NP cannot be solved in polynomial time), then SAT also cannot be
solved in polynomial time. In other words, SAT is the hardest of the problems
from this class.

It is known that all the problems from the class NP can be solved in
exponential time. Indeed, for a problem of size n, there are ≤ an possible
guesses, where a is the size of the corresponding alphabet, so we can simply
try all these guesses one by one.

Example: systems of linear equations. One of the simplest-to-solve numerical
problems is the solution to a system of linear equations

a11 · x1 + . . . + a1n · xn = b1;

. . .

am1 · x1 + . . . + amn · xn = bm.



Towards a New Justification for Fuzzy Logic Ideas 7

In the situation when all the unknowns xi can take arbitrary real values, there
exist efficient algorithms for solving such systems of equations – even the well-
known Gauss elimination method, while not the fastest, it still feasible.

However, as soon as we restrict ourselves to discrete (e.g., integer-valued)
variables xi, the solution of such a system becomes an NP-hard problem [19].
Conclusion. So, we end up with the same conclusion: that in a cognizable
situations, we cannot have variables which only take discrete values – these
variables must be able to take arbitrary real values.

6 Case Study: Selecting the Most Representative Sample

Introduction to the problem. In many practical situations, it is desirable to find
the statistical analysis of a certain population, but this population is so large
that it is not practically possible to analyze every individual element from this
population. In this case, we select a sample (subset) of the population, perform
a statistical analysis on this sample, and use these results as an approximation
to the desired statistical characteristics of the population as a whole.

For example, this is how polls work: instead of asking the opinion of all
the people, pollsters ask a representative sample, and use the opinion of this
sample as an approximation to the opinion of the whole population.

The more “representative” the sample, the larger our confidence that the
statistical results obtained by using this sample are indeed a good approx-
imation to the desired population statistics. Typically, we gauge the repre-
sentativeness of a sample by how well its statistical characteristics reflect the
statistical characteristics of the entire population. For example, in the sample
of human voters, it is reasonable to require that in the selected sample, the
average age, the average income, and other characteristics are the same as in
the population in a whole. Of course, the representativeness of averages is not
enough: e.g., the voting patterns of people whose salary is exactly the national
average are not necessarily a good representation of how people will work on
average. For that, we need the sample to include both poorer and reacher
people – i.e., in general, to be representative not only in terms of averages
but also in terms of, e.g., standard deviations (i.e., equivalently, in terms of
variances).

In practice, many techniques are used to design a representative sample;
see, e.g., [10]. In this section, we show that the corresponding exact optimiza-
tion problem is computationally difficult (NP-hard).
How is this result related to fuzzy techniques? The main idea behind fuzzy
techniques is that they formalize expert knowledge expressed by words from
natural language.

In this section, we show that if we do not use this knowledge, i.e., if we
only use the data, then selecting the most representative sample becomes
a computationally difficult (NP-hard) problem. Thus, the need to find such
samples in reasonable time justifies the use of fuzzy techniques.
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Comment. Similar results are known: for example, it is known that a similar
problem of maximizing diversity is NP-hard; see, e.g., [9].
Towards formulation of the problem in exact terms. Let us assume that we
have a population consisting of N objects. For each of N objects, we know the
values of k characteristics x1, x2, . . . , xk. The value of the first characteristic
x1 for i-th object will be denoted by x1,i, the value of the second characteristic
x2 for the i-th object will be denoted by x2,i, . . . , and finally, the value of the
characteristic xk for the i-th object will be denoted by xk,i. As a result, we
arrive at the following formal definition:
Definition 1. By a population, we mean a tuple

p
def= 〈N, k, {xj,i}〉,

where:

• N is an integer; this integer will be called the population size;
• k is an integer; this integer is called the number of characteristics;
• xj,i (1 ≤ j ≤ k, 1 ≤ i ≤ N) are real numbers; the real number xj,i will be

called the value of the j-th characteristic for the i-th object.

Based on these known values, we can compute the population means

E1 =
1
N
·

N∑

i=1

x1,i, E2 =
1
N
·

N∑

i=1

x2,i, . . . ,

and the population variances

V1 =
1
N
·

N∑

i=1

(x1,i −E1)2, V2 =
1
N
·

N∑

i=1

(x2,i − E2)2, . . .

We can also compute higher order central moments.
Definition 2. Let p = 〈N, k, {xj,i}〉 be a population, and let j be an integer
from 1 to k.

• By the population mean Ej of the j-th characteristic, we mean the value

Ej =
1
N
·

N∑

i=1

xj,i.

• By the population variance Vj of the j-th characteristic, we mean the value

Vj =
1
N
·

N∑

i=1

(xj,i − Ej)2.

• For every integer d ≥ 1, by the even order population central moment
M

(2d)
j of order 2d of the j-th characteristic, we mean the value

M
(2d)
j =

1
N
·

N∑

i=1

(xj,i − Ej)2d.
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Comment. In particular, the population central moment M
(2)
j of order 2 (cor-

responding to d = 1) is simply the population variance.

In addition to the values x1,i, x2,i, . . . , we are given a size n < N of the
desirable sample. For each sample I = {i1, . . . , in} ⊆ {1, 2, . . . , N} of size n,
we can compute the sample means

E1(I) =
1
n

∑

i∈I

x1,i, E2(I) =
1
n

∑

i∈I

x2,i, . . .

and the sample variances

V1(I) =
1
n

∑

i∈I

(x1,i − E1(I))2, V2(I) =
1
n

∑

i∈I

(x2,i − E2(I))2, . . .

Definition 3. Let N be a population size.

• By a sample, we mean a non-empty subset

I ⊆ {1, 2, . . . , N}.

• For every sample I, by its size, we mean the number of elements in I.

Definition 4. Let p = 〈N, k, {xj,i}〉 be a population, let I be a sample of size
n, and let j be an integer from 1 to k.

• By the sample mean Ej(I) of the j-th characteristic, we mean the value

Ej(I) =
1
n
·
∑

i∈I

xj,i.

• By the sample variance Vj(I) of the j-th characteristic, we mean the value

Vj(I) =
1
n
·
∑

i∈I

(xj,i − Ej(I))2.

• For every d ≥ 1, by the sample central moment M
(2d)
j (I) of order 2d of

the j-th characteristic, we mean the value

M
(2d)
j (I) =

1
n
·
∑

i∈I

(xj,i − Ej(I))2d.

Comment. Similarly to the population case, the sample central moment M
(2)
j

of order 2 (corresponding to d = 1) is simply the sample variance.

We want to select the most representative sample, i.e., the sample I for which
the sample statistics E1(I), E2(I), . . . , V1(I), V2(I), . . . are the closest to the
population statistics E1, E2, . . . , V1, V2, . . .
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Definition 5. Let p = 〈N, k, {xj,i}〉 be a population.

• By an E-statistics tuple corresponding to p, we mean a tuple

t(1)
def= (E1, . . . , Ek).

• By an (E, V )-statistics tuple corresponding to p, we mean a tuple

t(2)
def= (E1, . . . , Ek, V1, . . . , Vk).

• For every integer d ≥ 1, by a statistics tuple of order 2d corresponding to
p, we mean a tuple

t(2d) def= (E1, . . . , Ek,M
(2)
1 , . . . ,M

(2)
k ,M

(4)
1 , . . . , M

(4)
k , . . . , M

(2d)
1 , . . . , M

(2d)
k ).

Comment. In particular, the statistics tuple of order 2 is simply the (E, V )-
statistics tuple.
Definition 6. Let p = 〈N, k, {xj,i}〉 be a population, and let I be a sample.

• By an E-statistics tuple corresponding to I, we mean a tuple

t(1)(I) def= (E1(I), . . . , Ek(I)).

• By an (E, V )-statistics tuple corresponding to I, we mean a tuple

t(2)(I) def= (E1(I), . . . , Ek(I), V1(I), . . . , Vk(I)).

• For every integer d ≥ 2, by a statistics tuple of order 2d corresponding to
I, we mean a tuple

t(2d)(I) def= (E1(I), . . . , Ek(I),M (2)
1 (I), . . . ,M (2)

k (I),

M
(4)
1 (I), . . . , M (4)

k (I) . . . , M
(2d)
1 (I), . . . ,M (2d)

k (I)).

Comment. In particular, the statistics tuple of order 2 corresponding to a
sample I is simply the (E, V )-statistics tuple corresponding to this same tuple.
We will show that no matter how we define closeness, this problem is NP-

hard (computationally difficult).
Let us describe the problem in precise terms. To describe which tuple

t(I) def= (E1(I), E2(I), . . . , V1(I), V2(I), . . .)

is the closest to the original statistics tuple

t
def= (E1, E2, . . . , V1, V2, . . .),

we need to fix a distance function ρ(t(I), t) describing how distant are the
two given tuples. Similarly to the usual distance, we would like this distance
function to be equal to 0 when the tuples coincide and to be positive if when
the tuples are different. So, we arrive at the following definitions.
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Definition 7. By a distance function, we mean a mapping ρ that maps every
two real-valued tuples t and t′ of the same size into a real value ρ(t, t′) in such
a way that ρ(t, t) = 0 for all tuples t and ρ(t, t′) > 0 for all t 6= t′.

As an example, we can take Euclidean metric between the tuples t =
(t1, t2, . . .) and t′ = (t′1, t

′
2, . . .):

ρ(t, t′) =
√∑

j

(tj − t′j)2.

Now, we are ready to formulate the problem.

Definition 8. Let ρ be a distance function. By a E-sample selection problem
corresponding to ρ, we mean the following problem. We are given:

• a population p = 〈N, k, {xj,i}〉, and
• an integer n < N .

Among all samples I ⊆ {1, . . . , N} of size n, we must find the sample I for
which the distance ρ(t(1)(I), t(1)) between the corresponding E-statistical tuples
is the smallest possible.

Definition 9. Let ρ be a distance function. By a (E, V )-sample selection
problem corresponding to ρ, we mean the following problem. We are given:

• a population p = 〈N, k, {xj,i}〉, and
• an integer n < N .

Among all samples I ⊆ {1, . . . , N} of size n, we must find the sample I for
which the distance ρ(t(2)(I), t(2)) between the corresponding (E, V )-statistical
tuples is the smallest possible.

Definition 10. Let ρ be a distance function, and let d ≥ 1 be an integer.
By a 2d-th order sample selection problem corresponding to ρ, we mean the
following problem. We are given:

• a population p = 〈N, k, {xj,i}〉, and
• an integer n < N .

Among all samples I ⊆ {1, . . . , N} of size n, we must find the sample I for
which the distance ρ(t(2d)(I), t(2d)) between the corresponding (2d)-th order
statistical tuples is the smallest possible.

Proposition 1. For every distance function ρ, the corresponding E-sample
selection problem is NP-hard.

Proposition 2. For every distance function ρ, the corresponding (E, V )-
sample selection problem is NP-hard.

Proposition 3. For every distance function ρ and for every integer d ≥ 1,
the corresponding (2d)-th order sample selection problem is NP-hard.
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What is NP-hardness: a brief informal reminder. In order to prove these re-
sults, let us recall what NP-hardness means. Informally, a problem P0 is called
NP-hard if it is at least as hard as all other problems from the class NP (a
natural class of problems).

To be more precise, a problem P0 is NP-hard if every problem P from the
class NP can be reduced to this problem P0. A reduction means that to every
instance p of the problem P, we must be able to assign (in a feasible, i.e.,
polynomial-time way) an instance p0 of our problem P0 in such a way that
the solution to the new instance p0 will lead to the solution of the original
instance p. For precise definitions, see, e.g., [19].

How NP-hardness is usually proved. The original proof of NP-hardness of
certain problems P0 is rather complex, because it is based on explicitly proving
that every problem from the class NP can be reduced to the problem P0.
However, once we have proven NP-hardness of a problem P0, the proof of
NP-hardness of other problems P1 is much easier.

Indeed, from the above description of a reduction, one can easily see that
reduction is a transitive relation: if a problem P can be reduced to a problem
P0, and the problem P0 can be reduced to a problem P1, then, by combining
these two reductions, we can prove that P can be reduced to P1.

Thus, to prove that a new problem P1 is NP-hard, it is sufficient to prove
that one of the known NP-hard problems P0 can be reduced to this problem
P1. Indeed, since P0 is NP-hard, every other problem P from the class NP
can be reduced to this problem P0. Since P0 can be reduced to P1, we can
now conclude, by transitivity, that every problem P from the class NP can be
reduced to this problem P1 – i.e., that the problem P1 is indeed NP-hard.

Comment. As a consequence of the definition of NP-hardness, we can conclude
that if a problem P0 is NP-hard, then every more general problem P1 is also
NP-hard.

Indeed, the fact that P0 is NP-hard means that every instance p of every
problem P can be reduced to some instance p0 of the problem P0. Since the
problem P1 is more general than the problem P0, every instance p0 of the
problem P0 is also an instance of the more general problem P1.

Thus, every instance p of every problem P can be reduced to some instance
p0 of the problem P1 – i.e., that the more general problem P1 is indeed NP-
hard.

Main idea of the proof: reduction to subset sum, a known NP-hard problem.
We prove NP-hardness of our problem by reducing a known NP-hard problem
to it: namely, a subset sum problem, in which we are given m positive integers
s1, . . . , sm, and we must find the signs εi ∈ {−1, 1} for which

m∑

i=1

εi · si = 0;

see, e.g., [19].
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A reduction means that to every instance s1, . . . , sm of the subset sum
problem, we must assign (in a feasible, i.e., polynomial-time way) an instance
of our problem in such a way that the solution to the new instance will lead
to the solution of the original instance.
Reduction: explicit description. Let us describe this reduction: we take N =
2n, k = 2, n = m, and we select the values xj,i as follows:

• x1,i = si and x1,m+i = −si for all i = 1, . . . ,m;
• x2,i = x2,m+i = 2i for all i = 1, . . . , m.

We will show that for this new problem, the most representative sample I has
ρ(t(I), t) = 0 if and only if the original instance of the subset sum problem
has a solution.
General analysis. Indeed, by definition of a distance function, the equality
ρ(t(I), t) = 0 is equivalent to t(I) = t, i.e., to the requirement that for the
sample I, means (and variances) within the sample are exactly the same as
for the entire population.
Consequences for the second component. Let us start by analyzing the conse-
quences of this requirement for the mean of the second component. For the
entire population of size N = 2m, for each i from 1 to m, we have two ele-
ments, i-th and (m + i)-th, with the value x2,i = x2,m+i = 2i. Thus, for the
population as a whole, this mean is equal to

E2 =
2 + 22 + . . . + 2m

m
.

For the selected subset I of size m, this mean should be exactly the same:
E2(I) = E2. Thus, we must have

E2(I) =
2 + 22 + . . . + 2m

m
.

By definition,

E2(I) =
1
m
·
∑

i∈I

x2,i.

Thus, we conclude that

S2(I) def=
∑

i∈I

x2,i = 2 + 22 + . . . + 2m.

What can we now conclude about the set I?
First of all, we can notice that in the sum 2+22+. . .+2m, all the terms are

divisible by 4 except for the first term 2. Thus, the sum itself is not divisible
by 4.

In our population, we have exactly two elements, element 1 and element
m + 1, for which x2,1 = x2,m+1 = 2. For every other element, we have x2,i =
x2,m+i = 2i for i ≥ 2 and therefore, the corresponding value is divisible by 4.

In regards to a selection I, there are exactly three possibilities:
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• the set I contains none of the two elements 1 and m + 1;
• the set I contains both elements 1 and m + 1; and
• the set I contains exactly one of the two elements 1 and m + 1.

In the first two cases, the contribution of these two elements to the sum S2(I)
is divisible by 4 (it is 0 or 4). Since all other elements in the sum S2(I) are
divisible by 4, we would thus conclude that the sum itself is divisible by 4 –
which contradicts to our conclusion that this sum is equal to 2+22 + . . .+2m

and is, therefore, not divisible by 4.
This contradiction shows that the set I must contain exactly one of the

two elements 1 and m+1. Let us denote this element by k1. For this element,
x2,k1 = 2. Subtracting x2,k1 and 2 from the two sides of the equality

S2(I) =
∑

i∈I

x2,i = 2 + 22 + . . . + 2m,

we conclude that

S2(I − {k1}) =
∑

i∈I−{k1}
x2,i = 22 + 23 + . . . + 2m.

In the new sum 22 + 23 + . . . + 2m, all the terms are divisible by 23 = 8
except for the first term 22. Thus, the sum itself is not divisible by 8.

In our remaining population {2, . . . , m, m + 2, . . . , 2m}, we have exactly
two elements, element 2 and element m + 2, for which x2,2 = x2,m+2 = 22.
For every other element, we have x2,i = x2,m+i = 2i for i ≥ 3 and therefore,
the corresponding value is divisible by 3.

In regards to a selection I, there are exactly three possibilities:

• the set I contains none of the two elements 2 and m + 2;
• the set I contains both elements 2 and m + 2; and
• the set I contains exactly one of the two elements 2 and m + 2.

In the first two cases, the contribution of these two elements to the sum
S2(I−{k1}) is divisible by 8 (it is 0 or 8). Since all other elements in the sum
S2(I − {k1}) are divisible by 8, we would thus conclude that the sum itself is
divisible by 8 – which contradicts to our conclusion that this sum is equal to
22 + 23 + . . . + 2m and is, therefore, not divisible by 8.

This contradiction shows that the set I must contain exactly one of the
two elements 2 and m+2. Let us denote this element by k2. For this element,
x2,k2 = 22. Subtracting x2,k2 and 22 from the two sides of the equality

S2(I − {k1}) =
∑

i∈I−{k1}
x2,i = 22 + 23 + . . . + 2m,

we conclude that

S2(I − {k1, k2}) =
∑

i∈I−{k1,k2}
x2,i = 23 + 24 + . . . + 2m.
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Now, we can similarly conclude that the set I contains exactly one element
from the pair {3,m + 3}, and in general, for every i from 1 to m, we can
conclude that the selection set I contains exactly one element ki from the
pair {i,m + i}.
Consequences for the first component. Let us now analyze the consequences of
this requirement for the mean of the first component. For the entire population
of size N = 2m, for each i from 1 to m, we have two elements, i-th and
(m+ i)-th, with the opposite values x1,i = si and x2,m+i = −si. Thus, for the
population as a whole, this mean is equal to E1 = 0.

For each i from 1 to m, the selection set contains exactly one element of
these two: ki = i and ki = m+ i. Thus, E1(I) = 0 means that the correspond-

ing sum is equal to 0:
m∑

i=1

x1,ki
= 0. Here, x1,ki

= εi · si, where:

• εi = 1 if ki = i, and
• εi = −1 if ki = m + i.

Thus, we conclude that
m∑

i=1

εi · si = 0 for some εi ∈ {−1, 1}, i.e., that the

original instance of the subset problem has a solution.

Equivalence. Vice versa, if the original instance of the subset problem has

a solution, i.e., if
m∑

i=1

εi · si = 0 for some εi ∈ {−1, 1}, then we can select

I = {k1 . . . , km}, where:

• ki = i when εi = 1, and
• ki = m + i when εi = −1.

One can easily check that in this case, we have E1(I) = E1, E2(I) = E2,
V1(I) = V1, V2(I) = V2, and, in general, M

(2d)
1 (I) = M

(2d)
1 and M

(2d)
2 (I) =

M
(2d)
2 .

Conclusion. The reduction is proven, so the problem of finding the most rep-
resentative sample is indeed NP-hard.

Discussion. In the definitions of sample selection problem P1 ( Definitions
8–10), the objective is to find the sample I of given size n (which is smaller
than N , the size of the population) such that the distance ρ(t(I), t) is the
smallest possible.

In the above text, we have proved, in effect, that the selection of a sample
I of a given size n (< N), such that the distance ρ(t(I), t) = 0, is NP-hard.

The distance is always non-negative. Thus, when the smallest possible
distance is 0, finding the sample I for which the distance ρ(t(I), t) is the
smallest possible is equivalent to finding the sample for which this distance is
zero. In general, the smallest possible distance does not necessarily equal to
0. Thus, the sample selection problem P1 is more general that the auxiliary
“zero-distance” problem P0 for which we have proven NP-hardness.
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We have already mentioned earlier that if a problem P0 is NP-hard, then
a more general problem P1 is NP-hard as well. Thus, we have indeed proved
that the (more general) sample selection problem is NP-hard.

Towards auxiliary results. In our proofs, we considered the case when the
desired sample contains half of the original population. In practice, however,
samples form a much smaller portion of the population. A natural question
is: what if we fix a large even number 2P À 2, and look for samples which
constitute the (2P )-th part of the original population? It turns out that the
resulting problem of selecting the most representative sample is still NP-hard.

Definition 11. Let ρ be a distance function, and let 2P be a positive even

integer. By a problem of selecting an E-sample of relative size
1

2P
, we mean

the following problem:

• We are given a population p = 〈N, k, {xj,i}〉.
• Among all samples I ⊆ {1, . . . , N} of size n =

n

2P
, we must find the

sample I for which the distance ρ(t(1)(I), t(1)) between the corresponding
E-statistical tuples is the smallest possible.

Definition 12. Let ρ be a distance function, and let 2P be a positive even

integer. By a problem of selecting an (E, V )-sample of relative size
1

2P
, we

mean the following problem:

• We are given a population p = 〈N, k, {xj,i}〉.
• Among all samples I ⊆ {1, . . . , N} of size n =

n

2P
, we must find the

sample I for which the distance ρ(t(2)(I), t(2)) between the corresponding
(E, V )-statistical tuples is the smallest possible.

Definition 13. Let ρ be a distance function, let d ≥ 1 be an integer, and
let 2P be a positive even integer. By a problem of selecting an (2d)-th order

sample of relative size
1

2P
, we mean the following problem:

• We are given a population p = 〈N, k, {xj,i}〉.
• Among all samples I ⊆ {1, . . . , N} of size n =

n

2P
, we must find the

sample I for which the distance ρ(t(2d)(I), t(2d)) between the corresponding
statistical tuples of order 2d is the smallest possible.

Proposition 4. For every distance function ρ and for every even integer

2P , the corresponding problem of selecting an E-sample of relative size
1

2P
is

NP-hard.

Proposition 5. For every distance function ρ and for every even integer 2P ,

the corresponding problem of selecting an (E, V )-sample of relative size
1

2P
is NP-hard.
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Proposition 6. For every distance function ρ, for every integer d ≥ 1, and
for every even integer 2P , the corresponding problem of selecting a (2d)-th

order sample of relative size
1

2P
is NP-hard.

Proof of Propositions 4–6. The proof is similar to the proofs of Propositions
1–3.

The main difference is that for each i from 1 to m, we now have not two
but 2P different objects

i,m + i, 2m + i, . . . , k ·m + i, . . . , (2P − 1) ·m + i

with the same value

x2,i = x2,m+i = . . . = x2,k·m+i = . . . = x2,(2P−1)·m+i = (2P )i.

(And this common value is also different.)
Among these 2P objects with the same value of the second characteristic

x2,., for the first half, we have x1,. = si and for the second half, we have
x1,. = −si, i.e.:

x1,i = x1,m+i = . . . = m1,(P−1)·m+i = si;

x1,P ·m+i = x1,(P+1)·m+i = . . . = m1,(2P−1)·m+i = −si.

By using divisibility by (2P )2 (instead of divisibility by 22), we conclude that
the best fitting sample is the one which has exactly one element of each group.
Thus, from E1(I) = E1, we similarly conclude that the original instance of the
subset problem has a solution – and hence that the new problems are indeed
NP-hard.

7 Symmetry: Another Fundamental Reason for
Continuity (“Fuzziness”)

Case study: benzene. To explain why symmetry leads to continuity, let us start
with a chemical example. In the traditional chemistry, a molecule is composed
from atoms that exchange electrons with each other. If an atom borrows one
electron from another atom, we say that they have a connection of valence 1,
if two electrons, there is a connection of valence 2, etc.

From the analysis of benzene, it has been clear that it consists of 6 carbon
and six hydrogen atoms, i.e., that its chemical formula is C6H6. However, for a
long time, it was not clear how exactly they are connected to each other. The
solution came in the 19th century to a chemist August Kekule in a dream.
He dreamed of six monkeys that form a circle in which each monkey holds to
the previous monkey’s tail. According to this solution, the six C atoms form
a circle. To each of these atoms, a H atom is attached. Each C atom has a 1
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valence connection to H, 1 valence connection to one of its neighbors, and 2
to another neighbor.

The resulting chemical structure is still routinely described in chemical
textbooks – because a benzene loop is a basis of organic chemistry and life.
However, now we understand that this formula is not fully adequate. Indeed,
according to this formula, the connections between C atoms are of two dif-
ferent types: of valence 1 and of valence 2. In reality, the benzene molecule is
completely symmetric, there is no difference between the strengths of different
connections.

It is not possible to have a symmetric configuration is we require that
valencies are integers. To equally split the remaining valence of 3 (1 is taken for
H) between the two neighbors, we need a valence of 3/2. This is not possible in
classical chemistry – but this is possible, in some sense, in quantum chemistry
where, as we have mentioned, we have a continuum of intermediate states;
see, e.g., [2].

Fuzzy logic itself is such an example. Fuzzy logic itself can be viewed as an
example where symmetries leads to values intermediate between the original
discrete values.

Indeed, in traditional logic, we have two possible truth values: 1 (“true”)
and 0 (“false”). How can we use this logic to describe the absence of knowl-
edge? If we do not know whether a given statement A is true or not, this
means that we have the exact same degree of belief in the statement A as
we have in its negation ¬A. In the traditional logic, none of the two truth
values are symmetric (invariant) under such transformation A → ¬A. Thus,
to adequately describe this situation, we need to also consider additional (in-
termediate) truth values.

And indeed, in fuzzy logic with the set of truth values [0, 1] and the nega-
tion operation f¬(x) = 1 − x, there is a value which is invariant under the
operation A → ¬A: the value 0.5.

8 Case Study: Territory Division

Formulation of the problem. In many conflict situations, several participants
want to divide a territory between themselves. It may be farmer’s children
dividing his farm, it may be countries dividing a disputed territory.

Traditional (non-fuzzy) formalization of the problem. Let us follow [15] and
describe a traditional (non-fuzzy) formalization of this problem. Let us denote
the disputed territory (i.e., to be more precise, the set of all the points in this
territory) by T . Our objective is to divide this territory between n participants,
i.e., to select a division of the set T into the sets T1, T2, . . . , Tn for which
Ti ∩ Tj = ∅ for i 6= j and

T1 ∪ T2 ∪ . . . ∪ Tn = T.
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It is reasonable to assume that the utility ui of the i-th participant in acquiring
the territory Ti is linear in Ti, i.e., has the form

ui(Ti) =
∫

Ti

Ui(x) dx

for some appropriate function Ui(x). As we mentioned in [15], it is reasonable
to use Nash’s criterion to select the optimal division, i.e., to select the division
for which the product

u
def= u1(T1) · u2(T2) · . . . · un(Tn)

attains the largest possible value. According to [15], in the optimal solution,
for every participants i, there is a weight ci such that each point x is assigned
to the participant with the largest weighted utility ci · Ui(x).

In particular, for two participants, there is a threshold c such that all the
points x for which U1(x)/U2(x) > c go to the first participant, and all the
points x for which U1(x)/U2(x) < c go to the second participant.

Possibility of a “fuzzy” solution. From the commonsense viewpoint, why do
we have to necessarily divide all the disputed territory? Why cannot we control
some parts of it together? In other words, instead of dividing the set T into
subsets Ti, why cannot we assign, to every point x ∈ T and to every i, the
degree di(x) to which the i-th participant will control the neighborhood of
this point – in such a way that for every point x,

d1(x) + . . . + dn(x) = 1.

In other words, instead of a crisp partition we have a fuzzy partition.
In this setting, the utility ui of the i-th participant has the form

ui(di) =
∫

Ui(x) · di(x) dx,

and our objective is to find a fuzzy partition for which the product

u
def= u1(d1) · u2(d2) · . . . · un(dn)

attains the largest possible value.

Observation: the above “fuzzy” problem always has a crisp optimal solution.
The derivation from [15] was based on the idea that if we attain a maximum,
then a small change of assignment in the vicinity of each point will only
decrease (or not change) the desired product. For the fuzzy problem, a similar
argument shows that there are weights ci such that in the optimal solution,
every point x for which the weighted utility each point x is assigned to the
participant with the largest weighted utility ci · Ui(x) of the i-th participant
is larger than the weighted utility of all other participants is assigned to this
i-th participant.
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The only points about which we cannot make a definite assignment are the
ones in which two or more participants have exactly the same weighted utility.
How we divide these points between these participants does not matter – as
long as the overall degree of all the points assigned to each of these participants
remains the same. In particular, this means that it is always possible to have
a crisp division with the optimal value of the desired product.

So, we arrive at a somewhat paradoxical situation: even when we allow
“fuzzy” divisions, the corresponding optimization problem always have a crisp
solution. So, at first glance, it may seem that fuzzy solutions are not needed
at all.

As we will see, the situation changes if we consider symmetry.

Symmetry leads to fuzziness. For the territory division problem, a symmetry
means a transformation f : T → T that preserves the area of each (crisp)
subset and that preserves the utility of each subarea to each participant.
Preserving area means that f has to be a measure-preserving transformation.
Preserving utility means that we must have Ui(x) = Ui(f(x)) for all x.

It is reasonable to require that if the original situation allows a symmetry,
then the desired division should be invariant with respect to this symmetry.
Let us show that this requirement leads to a fuzzy solution.

Indeed, let us consider the simplest situation in which we have only two
participants, and both assign equal value to all the points U1(x) = U2(x) = 1.
In this case, the utility of each set Ti is simply equal to its area Ai, so the
optimization problem takes the form

A1 ·A2 → max .

Since the sum A1 + A2 is equal to the area A of the original territory T , this
problem takes the form

A1 · (A−A1) → max .

One can easily check that the optimal crisp solution means that A1 = A/2,
i.e., that we divide the area T into two equal halves.

This solution is optimal but it is not symmetric. Indeed, in this case, sym-
metries are simply area-preserving transformations. Symmetry of the division
means that f(T1) = T1 for all such transformations f . However, for every two
points x, y ∈ T , we can have an area-preserving transformation f that maps x
into y: f(x) = y. In particular, we can have sauch a transformation for x ∈ T1

and y ∈ T2, in which case f(T1) 6= T1. Thus, a crisp symmetric solution is
impossible.

In contrast, a fuzzy symmetric solution is quite possible – and uniquely de-
termined: we simply assign to each point x equal degrees d1(x) = d2(x) = 1/2.
Then, f(d1) = d1 and f(d2) = d2 for all area-preserving transformations f .

In general, we always have an optimal symmetric solution: in this solution,
equally desired points – for which ci · Ui(x) = cj · Uj(x) – are all assigned a
joint control with the same degree of ownership depending only on i and j.
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9 Conclusion

In this paper, we have proven that from the natural assumption that the
world is cognizable, we can conclude that intermediate degrees are needed to
describe real-world processes. This conclusion provides an additional expla-
nation for the success of fuzzy techniques (and other techniques which use
intermediate degrees) – success which often goes beyond situations in which
the intermediate degrees are needed to describe the experts’ uncertainty.
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