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Abstract

Uncertainty is ubiquitous. Depending on what information we have,
we get different types of uncertainty. For each type of uncertainty, tech-
niques have been developed for efficient representation and processing of
this uncertainty. However, the plethora of different uncertainty techniques
is often confusing for practitioners. The situation is especially difficult in
frequent situations when we need to gauge the uncertainty of the result of
complex multi-stage data processing, and different data inputs are known
with different types of uncertainty. To avoid this problem, it is necessary
to develop and implement a general approach to representing and process-
ing different types of uncertainty. In this paper, we argue that the most
appropriate foundation for this general approach is interval uncertainty.

Uncertainty is ubiquitous. All the data comes either from measurements
or from expert estimates. Neither measurements nor expert estimates are ab-
solutely accurate, so we always have to deal with uncertainty; see, e.g., [8].

The situation is especially critical for dynamical and/or spatial data:

• For dynamical data, we not only have uncertainty about the correspond-
ing values, we also have temporal uncertainty, i.e., uncertainty about the
moment of time.

• For spatial data, we not only have uncertainty about the corresponding
values, we also have spatial uncertainty, i.e., uncertainty about the spatial
location.

Different types of uncertainty. Depending on what information we have,
we have different types of uncertainty.
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Probabilistic uncertainty. In the traditional approach, we assume that we
know the probability of each possible value of the measurement error; in this
case, we have probabilistic uncertainty [8].

Interval uncertainty. In many practical situations, we only know the upper
bound ∆ on the measurement error. In this case, based on the measurement
result x̃, the only information that we have about the actual (unknown) value
x of the corresponding quantity is that x belongs to the interval [x̃−∆, x̃+∆].
This situation is known as interval uncertainty; see, e.g., [2, 4].

Case of imprecise probabilities. In some cases, in addition to the interval,
we also have partial information about the probabilities; this case is handled by
imprecise probability techniques.

Cased of imprecise (“fuzzy”) uncertainty. Sometimes, we only have an
expert estimate whose accuracy is described by imprecise (“fuzzy”) words from
natural language such as “approximate”, “small”, etc.; to describe such uncer-
tainty, we can use fuzzy techniques specifically designed to handle this type of
uncertainty; see, e.g., [3, 7].

Different types of uncertainty lead to a practical challenge. For each
type of uncertainty, techniques have been developed for efficient representation
and processing of this uncertainty. The plethora of different uncertainty tech-
niques is often confusing for practitioners.

The situation is especially difficult in frequent situations when we need to
gauge the uncertainty of the result of complex multi-stage data processing, and
different data inputs are known with different types of uncertainty.

For example, in biomedical spatial data processing, we often need to combine
measurement results – which are usually known with probabilistic or interval
uncertainty – with the imprecise expert estimates of severity of different symp-
toms. This difficulty inhibits our ability to process such data, since at presence
a service consuming two data sets and producing a third one may not know
how to represent the uncertainty of its output dataset because the spatial un-
certainty of the input datasets is of different type – and thus, have different
representations.

What is needed to confront this challenge. To facilitate processing of
uncertainty, especially dynamical and spatial uncertainty, it is necessary to de-
velop and implement a general approach to representing and processing different
types of uncertainty.

Our proposal. We believe – and we will try to convince the readers – that the
most appropriate foundation for this general approach is interval uncertainty.
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Interval uncertainty is the most fundamental type of uncertainty. In-
terval uncertainty is the most fundamental one: indeed, in measurements, no
matter how partial our knowledge, we always know the upper bound on the
measurement error – otherwise, if we cannot even guarantee an upper bound,
this is not a measurement.

Once we know the upper bound, we know the interval.

Interval uncertainty can be used as a basis for all other types of
uncertainty. From the computational viewpoint, interval uncertainty can be
used as a basis for all other types of uncertainty.

For example, often, in addition to the interval, we have partial information
about the probabilities. The exact information about the probability distribu-
tion means that we know the exact values of the probability density function,

cumulative distribution function (cdf) F (x)
def
= Prob(X ≤ x), moments, etc.

Partial information means that instead of the exact values of these statistical
characteristics c, we only know bounds c and c on these values, i.e., we only
know intervals [c, c] of possible values of these characteristics.

For example, the frequently used technique for describing imprecise prob-
abilities is the technique of p-boxes (probability boxes), in which for every x,
we only know the interval [F (x), F (x)] of possible values of cdf F (x); see, e.g.
[1, 6].

Similarly, it is known that fuzzy knowledge can be equivalently described
by listing intervals of possible values (known as “alpha-cuts”) corresponding to
different degree of certainty; see, e.g., [3, 5, 7].

Proposal. We therefore propose to use interval-based representations as a
uniform way of representing uncertainty, especially dynamical and spatial un-
certainty.

The main benefit of this uniform representation it will facilitate aggrega-
tion of different types of uncertainty and thus, help with the propagation of
uncertainty through data processing algorithms.

In computer terms, this uniform representation will facilitate communication
between services producing data products – and between these services and the
users of these services.
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