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Abstract—In fuzzy logic, there are two main approaches to
eliciting membership degrees: an approach based on polling
experts, and a Likert-scale approach, in which we ask experts to
indicate their degree of confidence on a scale – e.g., on a scale
form 0 to 10. Both approaches are reasonable, but they often
lead to different membership degrees. In this paper, we analyze
the relation between these two approaches, and we show that
this relation can be made much clearer if we use models from
quantum computing.

I. INTRODUCTION

Need for fuzzy logic. A large part of our knowledge about the
world is described in precise terms: we have equations (like
Newton’s equation) that describe the dynamics of systems,
we have exact value characterizing the results of measuring
physical quantities, we know the probabilities of different
outcomes in a physical experiment, etc. However, a significant
part of our knowledge comes from experts, be it medical
doctors of skilled pilots. Expert can often only describe their
knowledge by using imprecise (“fuzzy”) words from natural
language, such as “small”, “young”, etc. In contrast to well-
defined terms, these words are not precise. While a medical
doctor can be sure that a skin blemish of size 1 mm is small
and a 5-cm size blemish is not small, this doctor may not be
100% certain whether intermediate values are small or not.

How can we describe this uncertainty? When we are abso-
lutely confident in a statement, we declare this statement to be
true; in a computer, “true” is usually represented as 1. When
we are absolutely confident that a given statement is false,
we declare this statement to be false; in a computer, “false”
is usually represented as 0. To describe intermediate degrees
of confidence, L. A. Zadeh proposed to use numbers between
0 and 1; see, e.g., [3], [5], [9]. These numbers are known
as membership degrees because, e.g., the expert’s degree of
confidence that a 1 cm blemish is small can be viewed as a
degree to which 1 cm belongs to the fuzzy set of all small
values.

How can we elicit the corresponding degrees? There are
many ways to elicit membership degrees from the experts.

One of these methods is polling: we ask several experts
whether, e.g., a 1 cm blemish is small or not. If 7 out of 10
experts claim that it is small, we assign a degree 7/10 = 0.7
to the statement that a 1 cm blemish is small. In general, if
m out of n experts agree with the statement, we assign it a
degree of confidence m/n.

When we only have one expert, we cannot use polling. In
this case, we can ask the expert to mark his or her degree of
confidence in this statement on a scale, e.g., from 0 to 10;
such scales are known as Likert scales. If the expert selects
7 on a scale from 0 to 10, we assign, to this statement, a
degree 7/10 = 0.7. In general, if the expert describes his or
her confidence in a statement by marking m on a scale from
0 to n, we assign, to this statement, a degree of confidence
m/n.

Problem. Both above elicitation methods are reasonable, both
lead to reasonable useful results. However, usually, these two
methods led to different membership degrees. It is therefore
reasonable to find out how these different degrees are con-
nected.

What we do in this paper. In this paper, we analyze
the relation between the polling and Likert-scale elicitation
techniques, and we show that this relation becomes clearer if
we use formulas from quantum computing.

II. RELATION BETWEEN PROBABILISTIC (POLLING) AND
LIKERT-SCALE ELICITATIONS: ANALYSIS OF THE

PROBLEM

Probabilistic description of polling uncertainty. Formally,
the formula m/n for the polling uncertainty is the same as
the formula for a frequency (probability) of an event. This
formal analogy makes sense. Indeed, our main objective in
describing the expert’s knowledge is to use it. For example, we
want to know whether a 1 am blemish is small or not because
a medical expert describes her recommendations in terms of
“small”: one cure is proposed for a small blemish another for
a large one. So, a possible way to find out whether a 1 cm



blemish is small or nor is to observe cases when treatment
which works for small blemishes was actually used for a 1
cm blemish.

An expert who had such a patient and successfully used a
cure intended for small blemishes (or, vice versa, unsuccess-
fully tried to use a cure intended for big blemishes) will vote
that a 1 cm blemish is small. On the other hand, a doctor
who, for a 1 cm blemish, unsuccessfully tried a cure intended
for small blemishes (or, vice versa, successfully used a cure
intended for big blemishes) will vote that a 1 cm blemish is
not small.

In such an interpretation, the polling ratio m/n is equal to
the frequency with which a randomly selected 1 cm blemish
can be cured by a small-blemish cure.

Distinguishable probabilities. When we have a finite number
of observations, the frequency is only approximately equal to
the probability. For example, if we flip a fair coin (with 1/2
probability of falling heads) 10 times, we do not necessarily
get heads exactly (1/2) · 10 = 5 times.

The more observations we make, the close the frequency to
the actual probability. However, when the number of observa-
tions is limited, we cannot meaningfully distinguish different
probabilities. For example, when we flip a coin 10 times, we
can only have 11 possible outcomes: 0, 1, . . . , 10 – and we
have infinitely many possible values of the probability that
a coin falls heads. Based on the number of heads, we thus
cannot determine the exact probability, we have only finitely
many different options.

When we ask someone to mark a point on a Likert scale,
it is reasonable to assume that these points correspond to
distinguishable probabilities. How can we describe these dis-
tinguishable probabilities?

Let us start with the simple case when we have a single
observation. In this case, the probability of observing the event
is equal to p and the probability of not observing it is equal to
1−p. In other words, the number X1 of observed events during
a single observation is equal to X1 = 1 with probability p and
to X1 = 0 with probability 1− p. Thus, the expected number
E1 = E[X1] of observed events during a single observation
is equal to E1 = p · 1 + (1 − p) · p. Similarly, the variance
σ2
1

def
= E[(X1 − E1)

2] is equal to

σ2
1 = p·(1−p)2+(1−p)·(0−p)2 = p·(1−p)2+(1−p)·p2 =

p · (1− p) · [p+ (1− p)] = p · (1− p)];

(see, e.g., [7]).

The frequency f =
M

N
corresponding to N observations is

equal to the sum of N variables X1, . . . , XN corresponding
to N observations divided by N :

f =
X1 + . . .+XN

N
.

It is known that the expected value of the sum of equal to the
sum of expected values [7], so

E[X1 + . . .+XN ] = E[X1] + . . .+ E[XN ] = N · p.

When a random variable is divided by a constant, its expected
value decreases by the same constant [7], so we get

E[f ] =
E[X1 + . . .+XN ]

N
=

N · p
N

= p.

For N independent events, the variance of the sum is equal to
the sum of variances [7], so we get

σ2[X1+ . . .+XN ] = σ2[X1]+ . . .+σ2[XN ] = N ·p · (1−p).

When a random variable is divided by a constant, its variance
decreases by the square of this constant [7], so we get

σ2[f ] =
σ2[X1 + . . .+XN ]

N2
=

N · p · (1− p)

N2
=

p · (1− p)

N
.

Due to the Central Limit Theorem [7], for large N , the
distribution of the sum X1 + . . . +Xn is close to Gaussian;

thus, the distribution of the frequency f =
X1 + . . .+XN

N
is

also closed to Gaussian, with mean p and standard deviation

σ =

√
p · (1− p)

N
.

When we have two different events, with probabilities
p < p′, then the difference f ′ − f between the corresponding
frequencies is equal to the difference between two independent
(almost) normal distributions. Thus, this difference is also
normally distributed. The mean value of this difference is equal
to the difference between the means, i.e., to p′ − p, and the
variance is equal to the sum of the variances, i.e., to

σ2 =
p · (1− p)

N
+

p′ · (1− p′)

N
.

When can we guarantee – with a certain degree of confidence
– that f ′ > f and that, therefore, p′ > p? The probability
that f ′ − f < 0 is equal to the probability that for a normal
distribution with mean p′ − p > 0 and standard deviation σ,
we get a negative value. In statistics, it is known that the
probability of being ≥ 2σ away from the mean E is ≈ 10%,
the probability to be at least 3σ away from the mean is ≈
0.1%, etc. For each degree of confidence, there is a value k0
such that values from the interval (E − k0 · σ,E + k0 · σ)
are consistent with the observations, while values outside this
interval are too improbable to be support the hypothesis that
p′ ≥ p. Thus, we can distinguish between probabilities when
all consistent values (i.e., all values from the above interval)
are positive, i.e., when E−k0 ·σ > 0 and E = p′−p > k0 ·σ.

For each value p, what is the next distinguishable value p′?
It is the smallest value p′ = p+∆p for which

p′ − p = ∆p > k0 ·
√

p · (1− p)

N
+

p′ · (1− p′)

N
> 0.

For large N , we get p′ ≈ p, so

p · (1− p)

N
+

p′ · (1− p′)

N
≈ 2 · p · (1− p)

N
,

and thus, the above condition takes the form

∆p > k0 ·
√
2 ·

√
p · (1− p)

N
.



The smallest of such values is

∆p = k0 ·
√
2 ·

√
p · (1− p)

N
.

Resulting relation between polling and Likert-scale elicita-
tion techniques. As we have mentioned, our idea is that when
we select the values corresponding to the Likert scale, we:

• take p = 0 as the first value; this value corresponds to
0 on a scale from 0 to n and, thus to the degree degree
0/n = 0,

• take the first distinguishable value as the next value, the
value which corresponds to 1 on a scale from 0 to n, and
thus, to the degree 1/n;

• the first valued distinguishable from the (1/n)-value as
the value which corresponds to 2 on a scale from 0 to n
and thus, to the degree 2/n;

• etc.
What is the resulting relation between the probability p and
the membership degree µ(p) corresponding to this probability?

For each probability p corresponding to a degree µ(p) =
k

n
,

the next value p+∆p corresponds to the degree µ(p+∆) =
k + 1

n
. In other words, for every p, we have

µ(p+∆p) = µ(p) +
1

n
.

When we have a reasonable number of observations, then
the value ∆p (as deduced above) is small. When ∆p is small,
we have

µ(p+∆p)− µ(p)

∆p
≈ lim

∆p→0

µ(p+∆p)− µ(p)

∆p
= µ′(p),

where µ′(p) denotes the derivative. Multiplying both sides of
the approximate equality

µ(p+∆p)− µ(p)

∆p
≈ µ′(p)

by ∆p, we conclude that

µ(p+∆p)− µ(p) ≈ µ′(p) ·∆p.

In this approximation, the formula µ(p + ∆p) = µ(p) +
1

n

takes the form µ′(p) ·∆p =
1

n
, or, equivalently,

µ′(p) =
1

n ·∆p
.

Substituting the above expression for ∆p into this formula, we
conclude that

µ′(p) =
1

n · k0 ·
√
2 ·

√
p · (1− p)

N

.

We can simplify this expression into

µ′(p) = c · 1√
p · (1− p)

for some constant c.
For p = 0, when no expert claims that the statement is true,

we should have µ(0) = 0. Thus, the general expression for
µ(p) can be obtained by integrating the above formula:

µ(p) = c ·
∫ p

0

dq√
q · (1− q)

.

A textbook way to compute this integral is to use an auxiliary
variable t for which q = sin2(t). In this case,

√
q = sin(t),√

1− q =

√
1− sin2(t) =

√
cos2(t) = cos(t),

dq = d(sin2(t)) = 2 · sin(t) · cos(t) · dt,

and thus, the integral takes the form∫ p

0

dq√
q · (1− q)

=

∫ t0

0

2 · sin(t) · cos(t) · dt
sin(t) · cos(t)

=

2 ·
∫ t0

0

dt = 2t0,

where t0 is the value corresponding to p, i.e., the value for
which for which sin2(t0) = p. So, we conclude that µ(p) =
2c·t0, where sin2(t0) = p. In other words, we have t0 = C ·µ,

where we denoted C
def
=

1

2c
. Thus, the relation between µ and

p takes the form
p = sin2(C · µ).

The value C can now be determined from the condition
that the absolute confidence µ = 1 corresponds to p = 1. For
µ = 1, we get p = 1 = sin2(C), so C =

π

2
. Finally, we get

the relation between the polling membership value p and the
Likert-scale membership value µ:

p = sin2
(π
2
· µ

)
.

Discussion. At first glance, this relation looks very mathemat-
ical and non-intuitive. We will show, however, that it becomes
much clearer if we use the techniques of quantum computing;
see, e.g., [6].

III. QUANTUM COMPUTING CLARIFIES THE RELATION
BETWEEN POLLING AND LIKERT-TYPE DEGREES

Probabilities in quantum computing: reminder. The main
idea of quantum computing is that by using quantum effects,
we can often drastically speed up computations. For example,
in classical physics, if we want to look for an element in
an unsorted array of n elements, then we need at least n
computational steps – because if we use fewer steps, we will
not look into all n cells and thus, we may miss the desired
element. Interestingly, in quantum case, we can perform the
search in

√
n steps (and

√
n ≪ n); see, e.g., [1], [2], [6].

This possibility comes from the fact that in quantum physics,
in addition to the usual classical states, we can also have
superpositions of these states.



For a single bit, in addition to the usual states 0 and 1 –
which are denoted as ⟨0| and ⟨1|, we also have superpositions,
i.e., states of the type a0 · ⟨0|+a1 · ⟨1|, where a0 and a1 are, in
general, complex numbers (in quantum computing, only real
values of a0 and a1 are used). Each such state can be described
as a vector with coordinates (a0, a1) in a 2-D vector space.
The corresponding quantum version of a bit is known as a
qubit.

In a general qubit state a0 · ⟨0|+ a1 · ⟨1|,
• the probability of observing 1 is equal to a21, and
• the probability of observing 0 is a20.

Since we always observe either 0 or 1, these probabilities
must add up to 1, i.e., we must always have a10 + a21 = 1.
In geometric terms, this means that the vector (a0, a1) must
be on the unit circle with a center at 0. Each such vector can be
uniquely described by its angle φ with the axis corresponding
to ⟨0|: in terms of this angle, we have a1 = sin(φ) and
a0 = cos(φ).

Because of this relation, a state of a qubit is (almost)
uniquely determined by the probability p = a21 of observing 1.
Once we know this probability, we can determine a1 as ±√

p
(this ± is what we meant by almost uniquely), and we can
determine a0 as ±

√
a20 = ±

√
1− p.

Resulting relation between polling and Likert-scale de-
grees. For each probability p, we can form a qubit state

√
p · ⟨1|+

√
1− p · ⟨0|

corresponding to this probability; see, e.g., see [4], [8]. For
this state:

• on the one hand, due to the geometry of quantum states,
we have p = a21 = sin2(φ);

• on the other hand, due to the above relation between
probabilities and Likert-scale values, we have

p = sin2
(π
2
· µ

)
.

Thus, we can conclude that the angle φ between the vector
corresponding to this state and the vector corresponding to the
false state is equal to

φ =
π

2
· µ.

So, the Likert-scale degree µ can be geometrically interpreted
as (proportional to) the angle between the two states:

µ =
2

π
· φ.

Fuzzy interpretation of a superposition between the two
states (see [8]) . Superposition is a basic operation in quantum
physics. In addition to superposition between the basic states
⟨0| and ⟨1|, we can also consider a superposition of states

√
p · ⟨1|+

√
1− p · ⟨0|

and √
p′ · ⟨1|+

√
1− p′ · ⟨0|

corresponding to uncertainty. To describe a superposition, we
can simply add the corresponding vectors (

√
p,
√
1− p) and

(
√
p′,

√
1− p′), and then “normalize” the resulting sum

(
√
p+

√
p′,

√
1− p+

√
1− p′),

i.e., divide it by the length√
(
√
p+

√
p′)2 + (

√
1− p+

√
1− p′)2

of this vector sum, to make sure that the resulting vector
belongs to the unit circle (and is, thus, a legitimate quantum
state). In terms of the probabilities p and p′, the resulting
vector has the form

(a′′1 , a
′′
0) =

 √
p+

√
p′√

(
√
p+

√
p′)2 + (

√
1− p+

√
1− p′)2

,

√
1− p+

√
1− p′√

(
√
p+

√
p′)2 + (

√
1− p+

√
1− p′)2


with

a′′1 =

√
p+

√
p′√

(
√
p+

√
p′)2 + (

√
1− p+

√
1− p′)2

.

Thus, the probability p′′ of observing 1 in this state is equal
to

p′′ = (a′′1)
2 =

(
√
p+

√
p′)2

(
√
p+

√
p′)2 + (

√
1− p+

√
1− p′)2

.

In terms of probabilities, this looks like a very complex
expression. However, in terms of angles, it becomes much
simpler. Indeed, if we take a sum of two unit vectors at angles
φ and φ′ from the ⟨0| axis, we get a bisecting vector at an
angle

φ′′ =
φ+ φ′

2
.

Since the Likert-scale degree is simply proportional to the
angle, we conclude that

µ′′ =
µ+ µ′

2
.

So, superposition corresponds to simple averaging of Likert-
scale degrees.
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