
Journal of Uncertain Systems
Vol.8, No.x, pp.xx-xx, 2014
Online at: www.jus.org.uk

How to Faster Test a Device for Different Combinations of

Parameters

Francisco Zapata1, Luis Gutierrez2, and Vladik Kreinovich2
1Department of Industrial and Systems Engineering

2Department of Computer Science

University of Texas at El Paso

El Paso, TX 79968, USA

fazg74@gmail.com, lcgutierrez@miners.utep.edu, vladik@utep.edu

Received 27 May 2013; Revised 1 August 2013

Abstract

A device has to function properly under all possible conditions: e.g., for all temperatures within a given
range, for all possible humidity values within a given range, etc. Ideally, it would be nice to be able to test
a device for all possible combinations of these parameters, but the number of such combinations is often
so huge that such an exhaustive testing is not possible. Instead, it is reasonable to check the device for all
possible values of each parameter, for each possible pairs of values of two parameters, and, in general, for
all possible combinations of values of k parameters for some k. For n parameters, a straightforward testing
design with this property contains O(nk) ·Nk experiments, where N is the number of tested values of each
parameter. We show that, by using a more sophisticated testing design, we can decrease the number of
experiments to a much smaller number O(logk−1(n)) ·Nk.
c⃝2014 World Academic Press, UK. All rights reserved.
Keywords: system testing, pairwise testing, triple testing

1 Formulation of the Problem

It is important to test a device for different combinations of parameters. Many devices have to
function correctly under many different values of the corresponding parameters: e.g., for temperatures within
the given range, for pressure within the given range, for humidity within the given range, etc.

It is not possible to test all possible combinations of parameters. Ideally, we should test the device
for all possible combinations of the corresponding parameters. However, often, such a testing is not realistic.
For example, if we have 20 possible parameters, and we consider 10 possible values of each of these parameters,
then testing all possible combinations would require an unrealistic amount of 1020 tests. Even in the idealized
situation when each test takes 1 second, then, with 3 · 107 seconds in a year, this testing would require 3 · 1012
years – longer than the lifetime of the Universe.

Solution: test for all pairs, or all triples, etc. Since we cannot test for all possible combinations of all
the parameters, we need to test at least for all possible values of each parameter separately. In other words,
we need to test the device for all possible values of outside temperature, then test this device for all possible
values of humidity, etc.

In this testing, we may overlook possible joint effect of two or more different parameters. To take such
an effect into account, it makes sense to arrange the tests in such a way that for every two parameters, we
test all possible combinations of values. Similarly, we may want to test in such a way that for every three
parameters, we test all possible combinations of values, etc.; see, e.g., [1, 2, 3, 4].

How to arrange such a test: first simple idea. For each parameter xi, we have a range [xi, xi] of
possible values. Let us assume that for each parameter, we test for N different values xi1 < xi2 < . . . < xiN .
In this case, we need N experiments to test the device’s behavior for all N values of each parameter.

If we simply want to test for all possible values of each parameter, then a straightforward idea is to first
test all possible values of the first parameter x1, then test all possible values of the second parameter x2,



2 F. Zapata, L. Gutierrez, V. Kreinovich: How to Faster Test a Device for Different Combinations of Parameters

etc., until we have tested all the parameters. If we denote by n the number of parameters, then this scheme
requires n ·N experiments.

If we want to test all possible pairs of parameters, then, for each of

(
n
2

)
pairs of parameters, we test all

possible N2 pairs of values. This requires

(
n
2

)
·N2 experiments.

Similarly, if we want to test all possible triples of parameters, then for each of

(
n
3

)
triples of parameters,

we test all possible N3 triples of values. This requires

(
n
3

)
·N3 experiments. In general, if we fix an integer

k, and we want to test all possible combinations of values of each k parameters, then for each of

(
n
k

)
k-tuples

of parameters, we test all possible Nk combinations of values. This requires

(
n
k

)
·Nk experiments.

We can test faster than that. It is easy to see that the simple straightforward approach uses too many
combinations of parameters, we can often use much fewer experiments.

For example, if we want to test all possible values of each parameter, then in the above straightforward
approach, we perform n ·N experiments. In reality, it is sufficient to perform only N experiments. Namely,
in each experiment j = 1, . . . , N , we take each parameter xi to be equal to xij :

• in the first experiment, we select the first value of each of n parameters, i.e., use parameters (x11, . . . , xn1);

• in the second experiment, we select the second value of each of n parameters, i.e., use parameters
(x12, . . . , xn2);

• . . .

• in the j-th experiment, we select the j-th value of each of n parameters, i.e., use parameters (x1j , . . . , xnj);

• . . .

• finally, in the last (N -th) experiment, we select the N -th value of each of n parameters, i.e., use
parameters (x1N , . . . , xnN ).

When we have many parameters n ≫ 1, we then have n ·N ≫ N , so this idea drastically decreases the number
of necessary experiments – and thus, the testing time.

Comment. In some cases, we have different number of values Ni for different parameters xi. In this case,

in the straightforward approach, we need
n∏

i=1

Ni combinations, but instead, we can simply use N = max(Ni)

combinations: namely, we set xij = xiNi when j > Ni. Thus, when all the values Ni are of the same order,
we still get a drastic decrease in the number of experiments.

What we do in this paper. In this paper, we show that similar faster testing is possible when we test all
possible pairs of parameters, all possible triples, etc.

2 New Testing Design: Main Idea and Step-by-Step Description

Let us formulate the problem in precise terms. The above description leads to the following definition.

Definition. Let n > 0, N > 0, and k > 0 be positive natural numbers. The number n will be called the
number of parameters, and the number N will be called the number of values.

• By an experiment, we mean a tuple of n integers j1, . . . , jn, where 1 ≤ ji ≤ N for all i. We say that
in this experiment, we use the ji-th value of the i-th parameter. An experiment will also be denoted by
(x1i1 , . . . , xnjn).



Journal of Uncertain Systems, Vol.8, No.x, pp.xx-xx, 2014 3

• By a testing design, we mean a finite set of experiments.

• We say that a testing design tests each combination of k parameters if for every k-tuple 1 ≤ i1 < . . . <
ik ≤ N and for all k-tuples of integers v1, . . . , vk, with 1 ≤ vℓ ≤ N , this testing design contains an
experiment in which, for all ℓ from 1 to k, we use the vℓ-th value of the iℓ-th parameter.

Main objective. Our main objective is minimize the required number of experiments.
The straightforward ideas leads to a design that tests each combination of k parameters and that consists

of

(
n
k

)
· Nk experiments. As a function of the number n of parameters, this number of experiments is

O(nk) ·Nk.
For n = k, we need to test all Nk possible combinations of parameters, so we cannot have fewer than Nk

test anyway. However, as the above case of k = 1 shows, we can try to minimize the factor depending on n.

Main Result. For each k, there exists a testing design that tests each combination of k parameters and
that consists of O(logk−1(n)) ·Nk experiments.

Discussion.

• For k = 1, we get the known fact that we need O(N) experiments.

• For testing all possible pairs (k = 2), we need O(log(n)) · N2 experiments. This is much smaller than
O(n2) ·N2 experiments needed in the straightforward approach.

• For testing all possible triples (k = 3), we need O(log2(n)) ·N3 experiments. This is much smaller than
O(n3) ·N3 experiments needed in the straightforward approach.

Description of the new testing design: case of k = 2. Let B = ⌈log2(n)⌉ ∼ log(n) be the number of
bits needed to describe all the natural numbers from 0 to n− 1. Let us enumerate the bit from lowest to the
highest. Let us denote the b-th bit in the binary expansion of an integer i by bitb(i). For example, for the
binary number i = 10112 = 1110:

• the first (lowest) bit is 1: bit1(i) = 1;

• the second bit is 1: bit2(i) = 1;

• the third bit is 0: bit3(i) = 0;

• the fourth bit is 1: bit4(i) = 1, and

• all the other bits are 0s: bitb(i) = 0 for all b > 4.

Our new testing design consists of B groups of experiments. Each of these groups consists of N2 exper-
iments, so that total number of experiments is indeed O(log(n)) · N2. In the b-th group of experiments, for
each pair of integers (f, s), 1 ≤ f ≤ N and 1 ≤ s ≤ n, we set:

• ji = f if bitb(i− 1) = 0, and

• ji = s if bitb(i− 1) = 1.

If we have two different integers i1 < i2, then i1 − 1 ̸= i2 − 1, so at least one bit b in the binary expansions
of i1 − 1 and i2 − 1 is different. Thus, for this bit b, the corresponding group of experiments tests all possible
pairs (f, s).

To make the testing design clear, let us illustrate it on three examples: n = 2, n = 4, and n = 8.

First example: n = 2. For n = 2, we need B = 1 bit to represent integers 0 and 1. Thus, in this case, it is
sufficient to have a single group of experiments, in which, for each pair (s, f), we set x1 = f and x2 = s. In
other words, each experiment has the form (s, f).



4 F. Zapata, L. Gutierrez, V. Kreinovich: How to Faster Test a Device for Different Combinations of Parameters

Second example: n = 4. For n = 4, we need B = 2 bits to represent integers 0, 1, 2, and 3. Here,
010 = 002, 110 = 012, 210 = 102, and 310 = 112. Thus, in this case, we have two groups of N2 experiments
each:

• In the first group of experiments, we assign s to all the values i for which bit1(i− 1) = 0, and f to all
the values i for which bit1(i− 1) = 1. Thus, each experiment has the form (f, s, f, s).

• In the second group of experiments, we assign s to all the values i for which bit2(i − 1) = 0, and f to
all the values i for which bit2(i− 1) = 1. Thus, each experiment has the form (f, f, s, s).

If i1 < i2 are both odd or both even, then the second group of experiments tests all possible combinations of
the values of the corresponding parameters. If one of the values i1 and i2 is odd and another value is even,
then the first group of experiments tests all possible combinations of values.

Third example: n = 8. For n = 8, we need B = 3 bits to represent integers from 0 to 7. Thus, in this
case, we have three groups of N2 experiments each:

• In the first group of experiments, each experiment has the form (f, s, f, s, f, s, f, s).

• In the second group of experiments, each experiment has the form (f, f, s, s, f, f, s, s).

• In the third group of experiments, each experiment has the form (f, f, f, f, s, s, s, s).

Description of the new testing design: case of k > 2. To describe the testing design for k > 2, we
use the following recursive algorithm that reduces a testing design for given k and n to a testing designs for
smaller k and n.

For n = k, we just have to test all Nk possible combinations of values of all k parameters.
For n > k, we divide the set of n parameters into two halves of size n/2. Then:

• To cover situations when all k parameters are in the first half and situations when all k parameters are
in the second half, we use the testing design for n/2 and k; each experiment in this design is copied for
the second half, so, e.g., a design fs becomes fsfs (see example below).

• To cover situations in which k− 1 parameters are in the first half and 1 parameter is in the second half,
we combine each experiment from testing plan for n/2 and k− 1 with each experiment from the testing
plan for n/2 and 1.

• To cover situations in which k − 2 parameters are in the first half and 2 parameters are in the second
half, we combine each experiment from testing plan for n/2 and k − 2 with each experiment from the
testing plan for n/2 and 2.

• . . .

• To cover situations in which k − i parameters are in the first half and i parameters are in the second
half, we combine each experiment from testing plan for n/2 and k − i with each experiment from the
testing plan for n/2 and i.

• . . .

• Finally, to cover situations in which 1 parameter are in the first half and k − 1 parameters are in the
second half, we combine each experiment from testing plan for n/2 and k−1 with each experiment from
the testing plan for n/2 and 1.

Proof that this algorithm requires O(logk2(n)) · Nk experiments. Let us prove, by induction over k,
that this algorithm indeed requires O(logk2(n)) ·Nk experiments. We already know that this is true for k = 1
and k = 2. Let us prove assume that this property holds for 1, 2, . . . , k− 1. Then, according to the algorithm,
the total number of experiments Ek(n) for n and k consists of:

• the total number of experiments Ek(n/2) for n/2 and k;



Journal of Uncertain Systems, Vol.8, No.x, pp.xx-xx, 2014 5

• the total number of experiments Ek−1(n/2) for n/2 and k− 1 multiplied by the total number of exper-
iments E1(n/2) for n/2 and 1;

• . . .

• the total number of experiments Ek−i(n/2) for n/2 and k− i multiplied by the total number of experi-
ments Ei(n/2) for n/2 and i;

• . . .

• the total number of experiments E1(n/2) for n/2 and 1 multiplied by the total number of experiments
Ek−1(n/2) for n/2 and k − 1.

In other words,

Ek(n) = Ek(n/2) +

k−1∑
i=1

Ek−i(n/2) · Ei(n/2). (1)

By induction, we know that for some constant Ck−1, for all i ≤ k−1, we have Ei(n/2) ≤ Ck−1 ·logi−1
2 (n/2)·N i.

Since log2(n/2) ≤ log2(n), we get Ei(n/2) ≤ Ck−1 · logi−1(n) ·N i. Thus,

Ek−i(n/2) · Ei(n/2) ≤ C2
k−1 · log

k−i−1
2 (n) ·Nk−i · logi−1

2 (n) ·N i =

C2
k−1 · log

k−2
2 (n) ·Nk. (2)

Thus, the sum of k− 1 such products is bounded by (k− 1) ·C2
k−1 · log

k−2
2 (n) ·Nk. So, from (1), we conclude

that
Ek(n) ≤ Ek(n/2) + (k − 1) · C2

k−1 · log
k−2
2 (n) ·Nk. (3)

Similarly, we get
Ek(n/2) ≤ Ek(n/4) + (k − 1) · C2

k−1 · log
k−2
2 (n) ·Nk,

Ek(n/4) ≤ Ek(n/8) + (k − 1) · C2
k−1 · log

k−2
2 (n) ·Nk,

etc. Every tim we decrease n in half, we add a term (k− 1) ·C2
k−1 · log

k−2
2 (n) ·Nk. In ≤ log2(n) steps, we get

from n to k, with Ek(k) = Nk. Thus, Ek(n) can be bounded by adding Nk and ≤ log2(n) terms of the type
(k − 1) · C2

k−1 · log
k−2
2 (n) ·Nk:

Ek(n) ≤ [1 + log2(n) · (k − 1) · C2
k−1 · log

k−2
2 (n)] ·Nk ≤ C · logk−1

2 (n) ·Nk.

The statement is proven.
To make the algorithm clearer, let us illustrate it on two examples: n = 4 and k = 3 and n = 8 and k = 3.

First example: n = 4 and k = 3. Let us describe all the experiments corresponding to n = 4 and k = 3.
The corresponding testing design consists of the following experiments:

• First, according to our algorithm, we should list all the experiments corresponding to n/2 = 2 and k = 3;
since in this case, k < n/2, there are no such experiments: it is not possible to have two parameters and
test all possible values of three of them.

• Then, we combine each experiment with n = 2 and k = 2 with each experiment with n = 2 and k = 1.
As we have mentioned earlier, there is one group of experiments with n = 2 and k = 2: sf , with s and
f going from 1 to N ; and one group corresponding to n = 2 and k = 1: tt, with t from 1 to N . Thus,
by combining them, we get experiments of the type sftt.

• Finally, we combine each experiment with n = 2 and k = 1 with each experiment with n = 2 and k = 2.
We have already described all constituent experiments, so, by combining them, we get experiments of
the type ttsf .

As a result, we get two groups of experiments: sftt and ttsf .



6 F. Zapata, L. Gutierrez, V. Kreinovich: How to Faster Test a Device for Different Combinations of Parameters

Second example: n = 8 and k = 3. According to the algorithm, the corresponding testing design consists
of the following experiments:

• First, according to our algorithm, we should list all the experiments corresponding to n/2 = 4 and
k = 3, and repeat each for the second half as well. Thus, from the experiments sftt and ttsf , we get

sfttsftt and ttsfttsf.

• Then, we combine each experiment with n = 4 and k = 2 with each experiment with n = 4 and k = 1.
As we have mentioned earlier, there are two groups of experiments with n = 4 and k = 2: sfsf and ssff ,
and one group corresponding to n = 4 and k = 1: tttt. Thus, by combining them, we get experiments
of the type

sfsftttt and ssfftttt.

• Finally, we combine each experiment with n = 4 and k = 1 with each experiment with n = 4 and k = 2.
We have already described all constituent experiments, so, by combining them, we get experiments of
the types

ttttsfsf and ttttssff.

Totally, we have 6 groups of N3 experiments.

Acknowlegdments

This work was supported in part by the Nati+onal Science Foundation grants HRD-0734825 and HRD-1242122
(Cyber-ShARE Center of Excellence) and DUE-0926721, by Grants 1 T36 GM078000-01 and 1R43TR000173-
01 from the National Institutes of Health, and by a grant N62909-12-1-7039 from the Office of Naval Research.

The authors are greatly thankful to Dr. Ricardo Pineda for valuable suggestions.

References

[1] R. Black, Managing the Testing Process, Wiley, New York, 2009.

[2] D. R. Kuhn, Y. Lei, and R. Kacker, “Practical Combinatorial Testing: Beyond Pairwise”, IEEE IT
Professional, May/June 2008, Vol. 10, No. 3, pp. 19–23.

[3] K. H. Pries and J. M. Quigley, Testing Complex and Embedded Systems, CRC Press, Boca Raton, Florida,
2010.

[4] M. S. Reorda, Z. Peng, and M. Violante (eds.), System-Level Test and Validation of Hardware/Software
Systems, Springer Verlag, London, 2005.


