If We Take Into Account that Constraints Are Soft, Then Processing Constraints Becomes Algorithmically Solvable

Quentin Brefort and Luc Jaulin
ENSTA-Bretagne, LabSTICC, IHSEV, OSM
2 rue François Verny, 29806 Brest, France
Quentin.Brefort@ensta-bretagne.org, luc.jaulin@ensta-bretagne.fr

Martine Ceberio and Vladik Kreinovich
Department of Computer Science
University of Texas at El Paso
500 W. University
El Paso, Texas 79968, USA
mceberio@utep.edu, vladik@utep.edu

Abstract—Constraints are ubiquitous in science and engineering. Constraints describe the available information about the state of the system, constraints describe possible relation between current and future states of the system, constraints describe which future states we would like to obtain. To solve problems from engineering and science, it is therefore necessary to process constraints. We show that if we treat constraints as hard (crisp), with all the threshold values exactly known, then in the general case, all the corresponding computational problems become algorithmically unsolvable. However, these problems become algorithmically solvable if we take into account that in reality, constraints are soft: we do not know the exact values of the corresponding thresholds, we do not know the exact dependence between the present and future states, etc.

Let us show that constraints are ubiquitous. Let us show that a natural description of all these objective necessitates the use of constraints.

Constraints are important in determining the state of the world. Let us start with the very first objective: determining the state of the world. Our information about the world comes from measurements. An ideal measurement of a physical quantity returns the exact value of this quantity. However, in practice, measurements are never ideal:

- Measurement never result in a single value of a quantity.
- Instead, measurements result in describing a set of possible values of the corresponding quantity.

For example, if:

- after measuring a quantity \(x_1\), we get the value \(\bar{x}_1\), and
- the manufacturer of the measuring instrument provided us with an upper bound \(\Delta_i\) on the corresponding measurement error \(\Delta x_i \equiv \bar{x}_i - x_i (|\Delta x_i| \leq \Delta_i)\),

then the only information that we gain about the actual (unknown) value \(x_i\) of this quantity is that this value belongs to the interval \([\bar{x}_i - \Delta_i, \bar{x}_i + \Delta_i]\); see, e.g., [17].

Some measuring instruments measure one of the basic quantities \(x_i\); other measuring instruments measure some combinations \(y = f(x_1, \ldots, x_n)\) of these quantities. In this case, after we perform the measurement and find out that the value \(y\) is between the corresponding bounds \(\bar{y} \equiv \bar{y} - \Delta\) and \(\bar{y} \equiv \bar{y} + \Delta\), we can then conclude that the actual (unknown) tuple belongs to a set

\[
\{(x_1, \ldots, x_n) : y \leq f(x_1, \ldots, x_n) \leq \bar{y}\}. \tag{1}
\]

From the computational viewpoint, a set is a constraint; see, e.g., [3], [5], [8], [14], [20]. Thus, constraints are important in determining the state of the world.

Constraints are important in predicting the future states. To make predictions about the future state \(y = (y_1, \ldots, y_m)\)

Main objectives of science and engineering: reminder. The main objective of science is to describe the world. The main objective of engineering is to predict consequences of different actions, different designs – and to select actions and designs which will lead to the future state with desired properties.

Main objectives of science and engineering: towards a precise description. Our information about the physical world usually comes in terms of the numerical values of different physical quantities. To describe the weather, we describe the temperature, the atmospheric pressure, the components of wind velocity, etc. To describe the health of a patient, we list numerous numbers coming from the blood test, from – if needed – EKG, etc.

The actual state of the world is therefore described in terms of the values of the corresponding physical quantities \(x_1, \ldots, x_n\). In these terms, to describe the world means to find out as much as possible about the possible values of the corresponding tuple \(x = (x_1, \ldots, x_n)\).

To understand the consequences of a certain action means to find out as much as possible about the future values \(y_1, \ldots, y_m\) of the relevant quantities – and we should be able to find the action for which the future state satisfies the desired properties.
based on the current state \(x \), we need to know the relation between \(x \) and \(y \).

In simple situations, the corresponding relation is straightforward: the available information about the state \(x \) enables us to uniquely determine the state \(y \). For example, this is the case of simple mechanical systems: once we knowing the initial location and velocity of a plant, we can uniquely predict its position at future moments of time.

In other cases, however, the future state \(y \) depends not only on the current information about the state, but also on many unknown factors. For example, even if we know the exact weather conditions in an area, this is not enough to make a long-term weather prediction for this area: future weather is also affected by difficult-to-measure factors such as the in-depth oceanic behavior.

In general, we do not have a deterministic dependence of \(y \) on \(x \); instead, we have a relation, i.e., the set \(R \subseteq X \times Y \) of possible pairs \((x, y)\).

In computational terms, a relation is a constraint. Thus, constraints are important for predicting consequences of different actions.

Constraints are important for selecting an action.

Let \(a = (a_1, \ldots, a_p) \) be parameters describing possible actions, and let \(A \subseteq \mathbb{R}^p \) be a set of possible actions.

In the ideal case:

- we know the current state \(x \),
- we know how different actions will affect this state, i.e., we know the relation \(y = f(x, a) \), and
- we have a constraint that the future state \(y \) must satisfy.

For example, when we design a car engine, we must make sure that its energy efficiency \(y_1 \) exceeds the required threshold, that the concentration \(y_2 \) of potential pollutants in its exhaust does not exceed a certain level, etc. If we describe the corresponding set of desired tuples \(y \) by \(D \), then the problem is to find the set \(R = \{ (a \in A : f(x, a) \in D) \} \) of actions which result in the satisfaction of all the required constraints.

In a more realistic case, instead of the exact state \(x \), we only know a set \(S \) of possible states \(x \). In this case, we need to find actions which would lead to the satisfaction of the desired constraints for all possible states \(x \). In other words, we need to describe the state
\[
\{ a \in A : f(x, a) \in D \text{ for all } x \in S \}. \quad (2)
\]

Need for processing constraints.

The above analysis shows that in solving problems from science and engineering, we need to process constraints. Let us list the resulting computational problems:

First, we need to describe the results of each measurement. Specifically, once we have a computable function \(f(x_1, \ldots, x_n) \) and computable values \(y \) and \(\bar{y} \), we need to describe the set \(\{ x : y \leq f(x) \leq \bar{y} \} \) of possible tuples \(x \) (i.e., of all the tuples \(x \) which are consistent with the results of this measurement).

Second, we need to be able to combine the results of several measurements. In other words:

- we know the set \(S_1 \) of all the tuples which are consistent with the first measurement;
- we know the set \(S_2 \) of all the tuples which are consistent with the second measurement;
- \(\ldots \)
- we know the set \(S_m \) of all the tuples which are consistent with the \(m \)-th measurement;
- we need to describe the set \(S = S_1 \cap \ldots \cap S_m \) of all the tuples which are consistent with the results of all available measurements.

Then, we need to be able to predict the future state:

- we know the set \(S \subseteq X \) of possible states of the world;
- we know the relation \(R \subseteq X \times Y \) that describes the system’s dynamics;
- we need to describe the set of possible \(Y \) of possible future states:
\[
Y = \{ y : (x, y) \in R \text{ for some } x \in S \}. \quad (3)
\]

In mathematical terms, \(Y \) is known as a composition \(Y = R \circ S \).

Finally, we need to describe the set of possible actions:

- we know the set \(S \subseteq X \) of possible states;
- we know the set \(A \) of possible actions;
- we know the set \(D \subseteq Y \) of desired future states;
- we know a computable function \(f(x, a) \) that describes how the future state depends on the initial state \(x \) and on the action \(a \);
- we need to describe the state of actions that lead to the desired goal
\[
\{ a \in A : f(x, a) \in D \text{ for all } x \in S \}.
\]

What we do in this paper.

In this paper, we start by describing the above four fundamental problems of constraint processing in precise algorithmic terms. We then show that in general, all these problems are algorithmically unsolvable.

At first glance, this sounds like one of these negative results that have been appearing starting with the 1930s Goedel’s Theorem. However, we will show that for our constraint processing problems, the situation is not as negative as it may seem. To be more precise:

- The situation is indeed negative if we assume that all the constraint are known exactly: that we know the exact bounds on the measurement error, that we know the exact relation between the present and future states, etc.
II. WHAT IS COMPUTABLE, WHEN CONSTRAINTS ARE COMPUTABLE, ETC.: A REMINDER

Mathematical objects for which we need to describe what is computable and what is not. In the above analysis, we started with the simplest object – a real number – which describe the value of a single quantity. Next, we considered tuples of real numbers – which describe states. After that, we considered functions and sets (constraints). To analyze which problems related to these objects are algorithmically solvable and which are not, we must first describe these objects in precise algorithmic terms.

Comment. A detailed description of computable objects and their properties can be found in [1], [13], [16], [21].

What is a computable real number? Let us start our description of what is computable and what is not with the simplest object – a real number. In physical terms, a real number describes the actual value of a physical quantity. As we have mentioned earlier, it is not possible to learn the exact value of this quantity, measurements can only provide us with approximate values. From this viewpoint, it is reasonable to call a real number computable if we can algorithmically predict, for each measurement, what will be the corresponding measurement result.

Let us describe this idea in precise terms. Most modern measuring instruments produce the measurement result in the binary form: as a sequence of bits describing the value of the measured quantity. Each measuring instrument provides only an approximate value of the quantity; in other words, it provides only the few \(k \) first bits in the binary expansion of the actual (unknown) value \(x \). In mathematical terms, the measurement result is thus a rational number \(r_k \) for which \(|x - r_k| \leq 2^{-k} \). Thus, we arrive at the following definition.

Definition 1. A real number \(x \) is called computable if there exists an algorithm that, given a natural number \(k \), returns a rational number \(r_k \) for which \(|x - r_k| \leq 2^{-k} \).

What is a computable tuple? This definition is straightforward: a tuple \(x = (x_1, \ldots, x_n) \) is computable if and only if all \(n \) real numbers \(x_1, \ldots, x_n \) are computable.

All physical quantities are bounded: an observation. From the purely mathematical viewpoint, a real number can take any value from \(-\infty\) to \(+\infty\). In practice, however, for each physical quantity, we usually know the bounds. For example:

- in physical measurements, a velocity cannot exceed the speed of light;
- in meteorological measurements, temperature must be between \(-80^\circ\) and \(+50^\circ\) C, and there are also bounds on wind speed, velocity, etc.

In the following text, we will denote the known lower and upper bounds on the \(i \)-th quantity by, correspondingly, \(L_i \) and \(U_i \); then, all physically possible values \(x_i \) must be from the interval \([L_i, U_i]\).

What is a computable function? A functional dependence \(y = f(x) \) between two physical quantities \(x \) and \(y \) is computable if, given the values of the quantity \(x \), we can algorithmically predict the value of the quantity \(y \).

In practice, as we have mentioned, we do not know the exact value of \(x \), we only know estimates \(r_k \) for this value. We therefore need to be able, based on the estimate \(r_k \) for \(x \), to compute the corresponding estimate \(s_k \) for \(y \). We also need to know how accurately we need to measure \(x \) to be able to estimate \(y \) with a given accuracy. Thus, we arrive at the following definition.

Definition 2. A function \(f : X \to Y \) is called computable if there exist two algorithms:

- the first algorithm, given a rational number \(r \in X \) and a natural number \(\ell \), computes a \(2^{-\ell} \)-approximation to \(f(r) \);
- the second algorithm, given a natural number \(\ell \), generates a natural number \(k \) such that \(d(x, x') \leq 2^{-k} \) implies \(d(f(x), d(x')) \leq 2^{-\ell} \).

Observable sets. We want to describe sets \(S \) – or, in other words, constraints – which are observable in the sense that, based on the observations (measurements), we can, in principle, determine whether a given state satisfies this constraint or not. Let us show that from the mathematical viewpoint, such sets have an interesting property – they are closed in the usual mathematical sense that:

- if a sequence of states \(s_k \in S \) tends to a limit state \(s \),
- then this limit state \(s \) should also belong to the set \(S \).

From the mathematical viewpoint, the fact that the state \(s \) is equal to the limit of the states \(s_k \) means that for every \(\varepsilon > 0 \) there exists an integer \(K \) such that for all \(k \geq K \), we have \(d(s_k, s) \leq \varepsilon \). In physical terms, this means that no matter how accurate our measurements, we will never be able to distinguish the state \(s \) from the appropriate state \(s_k \). In other words, no matter how many measurements we perform, we cannot distinguish the state \(s \) from one of the physically possible states \(s_k \). Since the state \(s \) is consistent with all possible measurements, this means that we should classify the state \(s \) as physically possible. Thus, the set \(S \) of physically possible states is indeed closed.

What is a computable set? Finally, let us describe what it means for a closed set \(S \) to be computable. We are interested in sets of states. From the mathematical viewpoint, we can have infinitely many possible states, characterized by all possible real-valued tuples \(x = (x_1, \ldots, x_n) \). However, in practice,
we only find an estimate of the actual state – by using measurements with a given accuracy.

Once we know the accuracy, then, in effect, we only have finitely many distinguishable states. For example, if the value of a quantity is known to be between 0 and 10, and we measure it with accuracy 0.1, then we cannot distinguish between the values like 1.02 and 1.07 the difference between them is below the instrument accuracy.

In this approximation, when we only have finitely many distinguishable states, a general set of states is represented simply a finite subset of this set of sets distinguishable within this accuracy. For each accuracy 2^{-k}, this (approximate) finite set S_k approximates the actual (infinite) set S in the following natural sense:

- each element $s \in S_k$ is 2^{-k}-close to some state
 $$s' \in S;$$
- vice versa, each element $s' \in S$ is 2^{-k}-close to some state $s \in S_k$.

This relation between the two sets can be described in terms of the Hausdorff distance
$$d_H(A, B) \overset{\text{def}}{=} \max \left(\max_{a \in A} d(a, B), \max_{b \in B} d(b, A) \right),$$
where $d(a, b) \overset{\text{def}}{=} \min_{b \in B} d(a, b)$, as $d_H(S_k, S) \leq 2^{-k}$. Thus, we arrive at the following definition.

Definition 3. A closed set $S \subseteq [L_1, U_1] \times \ldots \times [L_n, U_n]$ is called computable if there exists an algorithm that, given a natural number k, produces a finite list S_k of computable points which is 2^{-k}-close to S, i.e., for which $d_H(S_k, S) \leq 2^{-k}$.

Comment. We consider closed bounded sets. It is known that closed bounded subsets of a finite-dimensional space \mathbb{R}^n are compact. Because of this, computable sets are also known as computable compact sets; see, e.g., [1].

Known results about computable numbers, functions, and sets [1], [13], [16], [21]:

- For every two computable numbers $\ell < u$, we can, given a computable number x, check whether $x > \ell$ or $x < u$: to check this, it is sufficient to compute x, ℓ, and u with a sufficient accuracy.
- No algorithm is possible that, given a computable real number a, would check whether $a = 0$ or $a \neq 0$.
- No algorithm is possible that, given a computable real number a, would check whether $a \geq 0$ or $a < 0$.
- No algorithm is possible that, given a computable real number a, would check whether $a \leq 0$ or $a > 0$.
- There is an algorithm that, given two computable tuples x and y, computes the distances
 $$d_\infty(x, y) \overset{\text{def}}{=} \max(|x_1 - y_1|, \ldots, |x_n - y_n|) \quad \text{and} \quad d_2(x, y) \overset{\text{def}}{=} \sqrt{(x_1 - y_1)^2 + \ldots + (x_n - y_n)^2}.$$
- Minimum and maximum are computable.
- Composition of computable functions is computable. In particular, maximum and minimum of finitely many computable functions is computable.
- It is algorithmically possible, given a computable set S and a computable function $F(x)$, to compute $\max_{x \in S} F(x)$ and $\min_{x \in S} F(x)$.
- For every computable function $F(x, y)$ and for every computable set $S \subseteq X$, the functions $\max_{x \in S} f(x, y)$ and $\min_{x \in S} f(x, y)$ are computable functions of y.
- There exists an algorithm that, given a computable tuple x and a computable set S, returns the distance $d(x, S)$.
- For every two computable sets A and B, their union $A \cup B$ is also computable: namely, one can easily check that if A_k approximate A and B_k approximate B, then $A_k \cup B_k$ approximates $A \cup B$.
- For every two computable sets A and B, the corresponding set of pairs $A \times B$ is also computable: namely, one can easily check that if A_k approximate A and B_k approximate B, then $A_k \times B_k$ approximates $A \times B$ (in the sense of d_∞-metric).
- There exists an algorithm that, given a computable set S, a computable function f, and computable real numbers $\ell \leq b$, returns a computable number $\eta \in (\ell, b)$ for which the set $\{ x \in S : f(x) \leq \eta \}$ is computable.

III. **Under Hard (Crisp) Constraints, All Four Fundamental Problems of Constraint Processing Are Not Algorithmically Solvable**

Before we start describing our positive algorithmic results, let us first list the promised “negative results” – that if we treat constraints exactly, then for each of the four fundamental problems of constraint processing, no algorithm is possible which would solve all particular cases of the corresponding problem.

Proposition 1. No algorithm is possible that, given a computable function $f(x_1, \ldots, x_n)$ and computable numbers y and \bar{y}, returns the set $\{ x : y \leq f(x) \leq \bar{y} \}$.

Proof. The proof is by contradiction. One can easily check that the function $f(x_1) = \max(\min(x_1, 0), x_1 - 1)$ is computable. This function is equal:

- to x_1 for $x_1 \leq 0$,
- to 0 for $0 \leq x_1 \leq 1$, and
- to $x_1 - 1$ for $x_1 \geq 1$.

For $\bar{y} = -1$ and $\bar{y} = a$, the set $\{ x : \bar{y} \leq f(x) \leq \bar{y} \}$ is equal:

- to $[-1, a]$ when $a \geq 0$ and
- to $[-1, a]$ when $a < 0$.

Thus, the maximum M of the function $F(x_1) = x_1$ on this set is equal:

- to $1 + a$ for $a \geq 0$ and
- to a for $a < 0$.

In particular, for $|a| < 0.1$, we get:

- $M \geq 0.9$ when $a \geq 0$ and
- $M < 0.1$ when $a = 0$.

So, if we could algorithmically produce the set
\[\{x : y \leq f(x) \leq \bar{y}\}, \]
we would be able to estimate the value M and thus, to check whether a computable number is negative or non-negative – which is known to be impossible. The proposition is proven.

Proposition 2. No algorithm is possible that, given two computable sets S_1 and S_2, computes their intersection.

Proof. Let us take $S_1 = \{0, 1\}$. For every computable number a, let us take $S_2 = \{a, 1\}$. The intersection $S_1 \cap S_2$ is equal:

- to $\{0, 1\}$ when $a = 0$ and
- to $\{1\}$ when $a \neq 0$.

Thus, the minimum m of the function $F(x_1) = x_1$ over the intersection is equal:

- to 0 when $a = 0$ and
- to 1 when $a \neq 0$.

If the intersection was computable, then m would be computable too; by computing m with accuracy 0.1, we would be able to check whether $m = 0$ or $m = 1$ – and thus, check whether $a = 0$ or $a \neq 0$, and we know that this is not possible.

Proposition 3. No algorithm is possible that, given computable sets $S \subseteq X$ and $R \subseteq X \times Y$, returns the composition
\[Y = R \circ S. \]

Proof. Let us take
\[R = \{(x, y) : (-1 \leq x \leq 0 \& y = 0) \vee (0 \leq x \leq 1 \& -1 \leq y \leq 1)\}. \]

This set is clearly computable. For every computable number a, we can form a computable set $S = \{a\}$, here:

- $R \circ S = \{0\}$ when $a < 0$ and
- $R \circ S = [-1, 1]$ when $a \geq 0$.

Thus, the maximum M of the function $F(y) = y$ over the set $R \circ S$ is equal:

- to 0 when $a < 0$ and
- to 1 when $a \geq 0$.

If we could compute the composition, we would be able to compute M and thus, decide whether $a < 0$ or $a \geq 0$ – and we know that this is impossible. The proposition is proven.

Proposition 4. No algorithm is possible that, given computable sets S, A, and D, returns the set
\[\{a \in A : f(x, a) \in D \text{ for all } x \in S\} \]
of actions that lead to the desired goal.

Proof. Let us take $A = \{0, 1\}$, let $f(x, a) = a - x$, and let $D = [0, 1]$. In this case, we want to return the set R of all the actions $a \in \{0, 1\}$ for which $a \geq x$ for all $x \in S$. For each computable number $v \in (-1, 1)$, we can take $S = \{v\}$:

- When $v \leq 0$, then $R = \{0, 1\}$.
- When $v > 0$, then $R = \{1\}$.

Thus, the minimum m of the function $F(a) = a$ over the set R is equal:

- to 0 if $v \leq 0$ and
- to 1 if $v > 0$.

So, if we could compute the set R, we would be able to tell whether $v \leq 0$ or $v > 0$ – and this is known to be impossible. The proposition is proven.

IV. ANIMAL MAINTAINING SYSTEMS

Constraints are actually soft. The above negative results assume that all constraints are hard (crisp), i.e., all the thresholds are exactly known. In reality, the thresholds like y and \bar{y} are only approximately known: e.g., a bound on the measurement error can be 0.1, or it can be 0.101, from the physical viewpoint it is the same situation. So, if we find a solution for values which are slightly different from the original values y and \bar{y}, then this still solves the original physical problems.

Let us prove that due to this softness of constraints, all four constraint processing problems are algorithmically solvable.

Proposition 5. There is an algorithm that, given a computable function $f(x_1, \ldots, x_n)$ and computable numbers $y < \bar{y}$, and $\varepsilon > 0$, returns:

- a computable value \underline{y} which is ε-close to y:
 \[|\underline{y} - y| \leq \varepsilon; \]
- a computable value \bar{y} which is ε-close to \bar{y}:
 \[|\bar{y} - \bar{y}| \leq \varepsilon; \]

and

- a computable set $\{x : \underline{y} \leq f(x) \leq \bar{y}\}$.

Proof. One can easily check that the double inequality
\[y \leq f(x) \leq \bar{y} \]
is equivalent:
• to $f(x) - y \geq 0$ and $\overline{y} - f(x) \geq 0$, and thus,
• to $F(x) \leq 0$, where $F(x) \overset{\text{def}}{=} \min(\overline{y} - f(x), f(x) - y)$, and
• to $-F(x) \leq 0$.

According to one of the known results about computable sets which are listed above, for every $\varepsilon > 0$, there exists a $\eta \in (0, \varepsilon)$ for which the set $\{x : -F(x) \leq \eta\}$ is computable.

The inequality $-F(x) \leq \eta$ is equivalent to $F(x) \geq -\eta$. The smallest $F(x)$ of the two numbers $\overline{y} - f(x)$ and $f(x) - y$ is greater than or equal to $-\eta$ if and only if both these numbers are $\geq -\eta$, i.e., if and only if $\overline{y} - f(x) \geq -\eta$ and $f(x) - y \geq -\eta$.

Here:
• the first inequality is equivalent to $f(x) \leq \overline{y}$, where $\overline{y} \overset{\text{def}}{=} \overline{y} + \eta$ is ε-close to \overline{y};
• the second inequality is equivalent to $Y \leq f(x)$, where $Y \overset{\text{def}}{=} y - \eta$ is ε-close to y.

Thus, the inequality $-F(x) \leq \eta$ is equivalent to $Y \leq f(x) \leq \overline{y}$.

Hence, the set

$$\{x : Y \leq f(x) \leq \overline{y}\} = \{x : -F(x) \leq \eta\}$$

is indeed computable. The proposition is proven.

Second problem: discussion and results. In the above first constraint processing problem, we had numbers (thresholds), so we described the softness of the corresponding constraint by allowing to slightly modify these numbers.

In the second constraint processing problem, we do not have thresholds, we only have sets, so we need to be able to modify sets.

Such a modification is possible if we take into account that each closed set S can be described as $\{x : d(x, S) = 0\}$, i.e., equivalently, as $\{x : d(x, S) \leq t\}$, where $t = 0$. This description allows us to generate an approximate set by slightly modifying the corresponding threshold t.

Definition 4. For each set S and for each real number $\eta > 0$, by an η-neighborhood $N_\eta(S)$, we mean the set

$$\{x : d(x, S) \leq \eta\}.$$

Comment. One can easily check that the η-neighborhood $N_\eta(S)$ of the set S is η-close to this set: $d_H(S, d_\eta(S)) \leq \eta$.

Proposition 6. There exists an algorithm that, given m computable sets S_1, \ldots, S_m, and a computable real number $\varepsilon > 0$, returns a computable number $\eta \in (0, \varepsilon)$ for which the intersection $N_\eta(S_1) \cap \ldots \cap N_\eta(S_m)$ is computable.

Proof. A tuple x belongs to the intersection $N_\eta(S_1) \cap \ldots \cap N_\eta(S_m)$ if and only if it belongs to all m η-neighborhoods $N_\eta(S_i)$, i.e., if and only if $d(x, S_i) \leq \eta$ for all $i = 1, \ldots, m$.

A sequence of m numbers $d(x, S_i)$ is smaller than or equal to η if and only if the largest of them is smaller than or equal to η. Thus, the intersection can be described as $\{x : F(x) \leq \eta\}$, where $F(x) \overset{\text{def}}{=} \max(d(x, S_1), \ldots, d(x, S_m))$.

The maximum $F(x)$ of m computable functions $d(x, S_i)$ is computable. Thus, according to the above property of computable sets, there exists an $\eta \in (0, \varepsilon)$ for which the set $\{x : F(x) \leq \eta\}$ is computable – and, as we have shown, this set is exactly the desired intersection. The proposition is proven.

Proposition 7. There exists an algorithm that, given computable sets $S \subseteq X$ and $R \subseteq X \times Y$ and a computable real number $\varepsilon > 0$, returns a computable number $\eta \in (0, \varepsilon)$ for which the composition $N_\eta(R) \circ N_\eta(S)$ is computable.

Proof. The condition that $x \in S$ and $(x, y) \in R$ can be equivalently described as $d(x, S) = 0$ and $d((x, y), R) = 0$, and thus, as $\max(d(x, S), d((x, y), R)) = 0$.

So, the existence of such $x \in S$ is equivalent to $F(x) \leq t = 0$, where $F(y) \overset{\text{def}}{=} \min_{x \in S} \max(d(x, S), d((x, y), R))$.

The function $\max(d(x, S), d((x, y), R))$ is computable; thus, $F(y)$ is also computable, hence there exists an $\eta \in (0, \varepsilon)$ for which the set $\{y : F(y) \leq \eta\}$ is computable.

The inequality $F(y) \leq \eta$, i.e.,

$$\min_{x \in S} \max(d(x, S), d((x, y), R)),$$

is equivalent to the existence of x for which $\max(d(x, S), d((x, y), R)) \leq \eta$, i.e., for which $d(x, S) \leq \eta$ and $d((x, y), R) \leq \eta$.

By the definition of a set neighborhood $N_\eta(A)$:
• the first inequality $d(x, S) \leq \eta$ is equivalent to $x \in N_\eta(S)$, and
• the second inequality $d((x, y), R) \leq \eta$ is equivalent to $(x, y) \in N_\eta(R)$.

Thus, the condition $F(y) \leq \eta$ is equivalent to the existence of $x \in N_\eta(S)$ for which $(x, y) \in N_\eta(R)$, i.e., to $y \in N_\eta(R) \circ N_\eta(S)$.

So, the computable set $\{y : F(y) \leq \eta\}$ is equal to the composition $N_\eta(R) \circ N_\eta(S)$ – hence, this composition is indeed computable. The proposition is proven.

Proposition 8. There exists an algorithm that, given computable sets $S \subseteq X$, A, and D, a computable function $f(x, a)$, and a computable real number $\varepsilon > 0$, returns a computable number $\eta \in (0, \varepsilon)$ for which the set

$$\{a \in A : f(x, a) \in N_\eta(D) \text{ for all } x \in S\}$$

is computable.
The condition that \(f(x, a) \in D \) is equivalent to \(d(f(x, a), D) \leq \eta \). Thus, the requirement that this inclusion holds for all \(x \in S \) is equivalent to \(F(a) \leq \eta \), where

\[
F(a) \overset{\text{def}}{=} \max_{x \in S} d(f(x, a), D).
\]

The function \(F(a) \) is computable; thus there exists a computable value \(\eta \in (0, \varepsilon) \) for which the set \(\{ a \in A : F(a) \leq \eta \} \) is computable.

The condition \(F(a) = \max_{x \in S} d(f(x, a), D) \leq \eta \) is equivalent to the condition that \(d(f(x, a), D) \leq \eta \) for all \(x \in S \), i.e., to the condition that for all \(x \in S \), we have \(f(x, a) \in N_\eta(D) \). The proposition is proven.

V. What If Some Measurements Are Faulty

Formulation of the problem. In the above analysis, we assumed that all the measurements are reliable. In this case, if we denote by \(S_1 \) the set of all the states which are consistent with the \(i \)-th measurements, we can conclude that the actual state belong to the intersection \(S_1 \cap \ldots \cap S_m \) of all these sets.

A measuring instrument is rarely 100% reliable. Sometimes, it mis-performs, resulting in a numerical value which is far away from the actual value of the corresponding physical quantity.

For example, when we measure a distance from an underwater autonomous robot to a beacon, we get a wrong result when instead of the sonar signal coming directly from the beacon, we observe the signal which was first reflected against some external surface; see, e.g., [9].

Usually, we know the reliability of the measuring instrument, i.e., we know what fraction of measurement results is unreliable. If this fraction is 10\%, then we know that at least 90\% of the measurements are correct. In general, based on the total number \(m \) of measurements and the fraction of faulty ones, we can estimate the number \(q \) of correct measurements.

This way, we know that out of \(m \) measurements, at least \(q \) are correct. Thus, for some subset \(I \subseteq \{1, \ldots, m\} \) of size \(|I| = q \), the actual state \(s \) belongs to the intersection \(\bigcap_{i \in I} S_i \). The overall set \(S \) of possible states is thus equal to

\[
S = \bigcup_{I: |I|=q} \left(\bigcap_{i \in I} S_i \right).
\]

This set is called \(q \)-relaxed intersection [9].

The corresponding set is still computable – we take into account that constraints are soft. Under hard constraints, the corresponding set \(S \) is, in general, not computable – indeed, we have shown that it is not computable even when \(q = m \).

Under soft constraints, the desired set \(S \) is computable:

Proposition 9. There exists an algorithm that, given \(m \) computable sets \(S_1, \ldots, S_m \), an integer \(q \leq m \), and a computable real number \(\varepsilon > 0 \), returns a computable number \(\eta \in (0, \varepsilon) \) for which the set \(\bigcup_{I: |I|=q} \left(\bigcap_{i \in I} N_{\eta}(S_i) \right) \) is computable.

Proof. A tuple \(x \) belongs to each intersection \(\bigcap_{i \in I} N_{\eta}(S_i) \) if it belongs to all \(q \) \(\eta \)-neighborhoods \(N_{\eta}(S_i) \), i.e., if and only if \(d(x, S_i) \leq \eta \) for all \(i \in I \).

A sequence of \(q \) numbers \(d(x, S_i) \) is smaller than or equal to \(\eta \) if and only if the largest of them is smaller than or equal to \(\eta \). Thus, \(x \) belongs to the intersection if and only if \(F_I(x) \leq \eta \), where \(F_I(x) \overset{\text{def}}{=} \max_{i \in I} d(x, S_i) \).

Each minimum \(F_I(x) \) of \(q \) computable functions \(d(x, S_i) \) is computable. Therefore, the maximum \(F(x) \) of finitely many computable functions is also computable. Thus, according to the above property of computable sets, there exists an \(\eta \in (0, \varepsilon) \) for which the set \(\{ x : F(x) \leq \eta \} \) is computable – and, as we have shown, this set is exactly the desired union of intersections. The proposition is proven.

VI. While the Soft Constraints Problem is Algorithmically Solvable, This Problem Is Not, in General, Feasibly Solvable

Discussion. While the desired set is computable, the above algorithm requires us to consider as many functions as there are subsets \(I \) of size \(q \) – and this number, for \(q = k \cdot m \), exponentially grows with \(m \). So, while the algorithm is possible, the above algorithm is clearly not feasible, since for even medium-size \(m \approx 300 \), the corresponding number \(2^m \) of computational steps exceeds the lifetime of the Universe.

Is this because our algorithm is not perfect, or is this because the problem itself is complex? Our answer – as described by the following proposition – is that the itself problem is really complex, even for linear constraints. Specifically, we prove that this problem is \(NP \)-hard – i.e., that it is harder than all the problems from the reasonable class \(NP \), in the sense that every problem form the class \(NP \) can be reduced to our problem; for exact definitions, see, e.g., [7], [12], [15]. Most computer scientists believe that \(P \neq NP \), and thus, that it is not possible to have a feasible algorithm for solving an \(NP \)-hard problem.

Proposition 10. The following problem is \(NP \)-hard:

- given a set of \(m \) linear constraints and an integer \(q \),
- produce the set of all the tuples which satisfy at least \(q \) out of \(m \) constraints.

Proof. The following subset sum problem is known to be \(NP \)-hard: given \(n + 1 \) positive integers \(s_1, \ldots, s_n \), and \(S \), check
whether \(S \) can be represented as a sum of some of the values \(s_i \). Equivalently, we need to check whether it is possible to find values \(x_i \in \{0, 1\} \) such that \(\sum_{i=1}^{n} s_i \cdot x_i = S \).

To prove that our problem is NP-hard, let us reduce the subset sum problem to our problem. Since the subset sum problem is NP-hard, this means that every problem from the class NP can be reduced to the subset sum problem; thus, if we can reduce the subset sum problem to our problem, it will follow that all problems from the class NP can be reduced to our problem – and thus, that our problem is indeed NP-hard.

Let us describe the desired reduction. For each set of values \(s_1, \ldots, s_n, S \), let us form the following linear constraints:

\[
x_1 = 0; \quad x_1 = 1; \quad \ldots; \quad x_n = 0; \quad x_n = 1;
\]

\[
\sum_{i=1}^{n} s_i \cdot x_i = S \quad \text{(repeated \(n \) times)};
\]

\[
y = 0.
\]

We require that out of these \(m = 3n + 1 \) constraints, at least \(q = 2n \) are satisfied. We are interested in finding the set of all possible values \(y \) under this requirement.

The above \(3n + 1 \) constraints consist of three groups:

- the first \(2n \) constraints are of the form \(x_i = 1 \) or \(x_i = 1 \);
- then, we have the same sum constraint repeated \(n \) times;
- and finally, we have an additional constraint \(y = 0 \).

Since each value \(x_i \) can be either 0 or 1 but not both, for each \(i \), at most one of the constraints \(x_i = 1 \) and \(x_i = 0 \) can be satisfied. Thus, out of the first \(2n \) constraints, at most \(n \) can be satisfied, and if exactly \(n \) are satisfied, then each value \(x_i \) is equal to either 0 or 1.

Since at most \(n \) constraints from the first group can be satisfied, the sum constraint has to be satisfied – otherwise, we will get at most \(n + 1 < 2n \) constraints.

So:

- If the subset sum problem has a solution, that we can get \(2n \) constraints by selecting appropriate values \(x_i \). In this case, the variable \(y \) can attain any value.
- On the other hand, if the subset sum problem does not have a solution, this means that we cannot have \(2n \) constraints satisfied by simply picking appropriate values \(x_i \in \{0, 1\} \). Thus, to satisfy at least \(q = 2n \) constraints, we must invoke the constraint \(y = 0 \).

Hence:

- if the given instance of the subset sum problem has a solution, then \(y \) can take any value;
- otherwise, if the given instance of the subset sum problem does not have a solution, then \(y \) can only take value 0.

So, if we know the range of possible values of \(y \), we can check whether the given instance of the subset problem has a solution.

Thus, solving this particular case of our problem is equivalent to solving the given instance of the subset sum problem. This reduction proves that our problem is indeed NP-hard. The proposition is proven.

VII. SO, HOW TO SOLVE SOFT CONSTRAINTS PROBLEMS: GENERAL IDEA AND PRACTICAL EXAMPLE

Discussion. The fact that in general, the soft constraints problem is NP-hard means that – unless \(P = \text{NP} \) – it is not feasibly possible to always produce the exact solution to this problem: computation time grows exponentially with the number of constraints and thus, even for a moderate number of constraints, becomes non-feasible.

Resulting idea. To overcome this problem, a natural idea is to avoid considering all constraints, and to instead consider small groups of constraints.

Application: a brief description of the practical problem. A practical example of this approach is given in [2], [9]: a problem of 2D-localization of a mobile underwater robot. To locate the robot, stationary sonars placed at known locations periodically send a ping signal in all directions; they send signals one after another, so that signals from different sonars do not get mixed up. When the sonar’s signal reaches the robot, this signal gets reflected, and part of the reflected signal gets back to the emitting sonar.

The sonar then measures the signal’s “travel time” \(t_i \) as the difference between the emission time and the time when the sonar received the reflected signal. During this travel time, the signal traveled to the robot and back. So, the overall path of the signal is double the distance \(d_i \) from the robot to the corresponding sensor \(i \). Once we know the speed of sound \(v \), we can multiply the measured time interval \(t_i \) by this speed, divide by two, and get the distance \(d_i = (v \cdot t_i)/2 \) to the robot.

Need to take uncertainty into account. In practice, we need to detect the reflected signal against the ever-present noise. Because of the noise, we can only determine the moment when the reflected signal appeared with some accuracy – thus, we can only measure the distance \(d_i \) with some accuracy.

The manufacturer’s specification for the sonar provide us with the upper bound \(\Delta \) on the corresponding measurement error (provided, of course, that we are observing the reflection from the robot and not from some other object). Thus, once we know the estimated distance to the \(i \)-th sonar, i.e., the value \(\hat{d}_i = (v \cdot t_i)/2 \), then the actual (unknown) distance \(d_i \) can take any value from the interval \([\hat{d}_i - \Delta, \hat{d}_i + \Delta]\).

If the signal indeed comes from the robot, then, for each sonar \(i \), we would thus be able to conclude that the robot is located in the ring \(S_i \) formed by the two circles centered around this sonar: the ring between the circle corresponding to distance \(\hat{d}_i - \Delta \) and the circle corresponding to the distance \(\hat{d}_i + \Delta \). If all the recorded values \(\hat{d}_i \) corresponded to the robot, then we could find the set \(S \) of possible locations of the robot as the intersection of the sets \(S_i \) corresponding to all \(n \) sonars.

In real life, some measurements do come from other objects. In this case, some of the sets \(S_i \) reflect locations of
these other objects, and thus, the overall intersection may be empty. We therefore need to take into account that some of the measurements are faulty.

We arrive at the soft constraint problem. Since some measurements are faulty, the intersection of all the rings \(S_i \) corresponding to all the sonars is empty – since some of the rings describe the reflection from some other objects.

How do we locate the robot? A natural idea is to find the largest possible value \(q \) for which the intersection of \(q \) sets \(S_i \) is non-empty, and then find the corresponding \(q \)-relaxed intersection.

How to solve the corresponding soft constraint problem: **first idea.** Our first idea was to use a Guaranteed Outlier Minimal Number Estimator (GOMNE) described in [8], [10], [11]. To compute the corresponding intersections, GOMNE uses SIVIA (Set Inversion via Interval Analysis), an algorithm described in [8].

Limitations. For a reasonably small number of sonars, the above idea works reasonably well: it finds the correct location of the robot in more than 90% of the cases. However, when we increase the number of sonars \(m \), the corresponding computation time grows exponentially – in full accordance with our NP-hardness result. As a result, this method is not practical in situations when we have a large number of sonars.

Analysis of the problem: ideal case. We want to find the location \(r = (x, y, z) \) of the robot. In the ideal situation when all signals come from the robot and all the measurements are exact, each measurement results in the exact value of the distance \(d_i = \|r - r_i\| \) between the robot’s location \(r \) and the location \(r_i = (x_i, y_i, z_i) \) of the \(i \)-th sensor. Thus, after each measurement, we would have an equation

\[
\|r - r_i\| = \sqrt{(x - x_i)^2 + (y - y_i)^2 + (z - z_i)^2} = d_i.
\]

In general, if we have (at least) as many equations as there are unknowns, then we can find the values of all the unknowns. In our case, we have three unknowns \(x, y, \) and \(z \), so we need three equations to find their values. In other words, if we know three distances \(d_i, d_j, \) and \(d_k \), between the robot and three different sonars \(i, j, \) and \(k \), then we would be able to locate the robot.

From the ideal case to the realistic situation. In real life, as we have mentioned, measurements are imprecise. As a result of this measurement imprecision, for each triple of the measurement results \(d_i, d_j, \) and \(d_k \), instead of the exact location of a robot, we get a whole small region – the intersection \(S_{ijk} \) of the there corresponding rings \(S_i, S_j, \) and \(S_k \). The complexity of the problem comes from the fact that some measured values \(d_i \) come from other objects; as a result, the corresponding intersections \(S_{ijk} \) may not contain the actual location of the robot.

To locate the robot, for each triple and for each coordinate \(c = (x, y, \) or \(z) \), we compute the interval \([c_{ijk}, \tau_{ijk}] \) of all possible values of this coordinate for all the points from the intersection \(S_{ijk} \); since the number of constraints is small (equal to 3), these intervals can be computed very fast.

Now, we have as many intervals as there are triples. Since some measurements come from other objects, not all these intervals have a common point. We therefore look for the largest number \(q \) for which \(q \) intervals have a non-empty intersection. This can be computed feasibly:

- We sort all the endpoints of these intervals into an increasing sequence
 \[
c(0) \defeq -\infty < c(1) < c(2) < \ldots < c_N = \infty.
\]
- Values from the first zone \([c(0), c(1)]\) belong to \(n_0 = 0 \) intervals.
- Once we know the number of intervals \(n_z \) containing the values from the zone \([c(z), c(z + 1)]\), the next value \(n_{z + 1} \) is either larger by 1 (if \(c(z + 1) \) is a lower endpoint) or smaller by 1 (if \(c(z + 1) \) is an upper endpoint).

We can thus find the largest value \(q = \max n_z \), and return the union of all the zones \(z \) with \(n_z = q \) as the \(c \)-coordinate location of the robot.

The resulting algorithm is efficient and effective. The resulting feasible algorithm also locates the robot in about 90% of the cases – but much faster, with time growing much slower, only as a cube as the number \(m \) of sonars; this makes sense since we try all triples of sonars, and there are \(O(m^3) \) such triples.

Conclusion. The above tactic – of considering few constraints at a time – indeed helps us avoid the un-feasibility of the NP-hardness result.

Acknowledgment

This work was supported in part by the US National Science Foundation grants 0953339, HRD-0734825 and HRD-1242122 (Cyber-ShARE Center of Excellence) and DUE-0926721. The work was performed when Quentin Brefort was visiting the University of Texas at El Paso. This visit was supported by ENSTA-Bretagne.

The authors are thankful to the anonymous referees for valuable suggestions.

References

