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Abstract

For a measuring instrument, a usual way to find the probability distri-
bution of its measurement errors is to compare its results with the results
of measuring the same quantity with a much more accurate instrument.
But what if we are interested in estimating the measurement accuracy
of a state-of-the-art measuring instrument, for which no more accurate
instrument is possible? In this paper, we show that while in general, such
estimation is not possible; however, can uniquely determine the corre-
sponding probability distributions if we have several state-of-the-art mea-
suring instruments, and for one of them, the corresponding probability
distribution is symmetric.

1 Formulation of the Problem

Need to determine accuracies of measurement instruments. Most in-
formation comes from measurements. Measurement results are never absolutely
accurate: the measurement result x̃ is, in general, different from the actual (un-
known) value x of the corresponding quantity; see, e.g., [7]. To properly process
data, it is therefore important to know how accurate are our measurements.

Ideally, we would like to know what are the possible values of measurement

errors ∆x
def
= x̃ − x, and how frequent are different possible values of ∆x. In
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other words, we would like to know the probability distribution on the set of all
possible values of the measurement error ∆x.

How accuracies are usually determined: by using a second, much
more accurate measuring instrument. One usual way to find the desired
probability distribution is to have a second measuring instrument which is much
more accurate than the one that we want to estimate. In this case, the mea-
surement error ∆x2 = x̃2 − x of this second instrument is much smaller than
∆x = x̃−x and thus, the difference x̃− x̃2 = (x̃−x)− (x̃2−x) between the two
measurement results can serve as a good approximation to the measurement
error. From the sample of such differences, we can therefore find the desired
probability distribution for ∆x.

What if we do not have a more accurate measuring instrument? But
what if the measuring instrument whose accuracy we want to estimate is among
the best? In this case, we do not have a much more accurate measuring instru-
ment. What can we do in this case?

In such situations, we can use the fact that there usually, there are several
measuring instrument of the type that we want to analyze. Due to measurement
errors, for the same quantity, these instruments, in general, produce slightly
different measurement results. It is therefore desirable to try to extract the
information about measurement accuracies from the differences between these
measurement results.

Two possible situations. In some cases, we have a stable manufacturing pro-
cess that produces several practical identical measuring instruments, for which
the probability distributions of measurement error are the same. In such cases,
all we need to find is this common probability distribution.

In other cases, we cannot ignore the differences between different instru-
ments. In this case, for each individual measuring instrument, we need to find
its own probability distribution.

What is known: case of normal distribution. In many practical situations,
the measurement error is caused by the joint effect of numerous independent
small factors. In such situations, the Central Limit Theorem (see, e.g., [9])
implies that this distribution is close to Gaussian.

A Gaussian distribution is uniquely determined by its mean (bias) and stan-
dard deviation σ. When we only know the differences, we cannot determine the
bias: it could be that all the measuring instruments have the same bias, and we
will never determine that since we only see the differences. Thus, it makes sense
to limit ourselves only to the random component of the measurement error, i.e.,
to the measurement error minus its mean value.

For this “re-normalized” measurement error ∆x, the mean is 0. So, all we
need to determine is the standard deviation σ. These standard deviations can
indeed be determined; see, e.g., [4, 8].

Specifically, hen we have two identical independent measuring instruments,
with normally distributed measurement errors ∆x1 and ∆x2, then the difference
x̃2 − x̃1 is also normally distributed, with variance V = σ2 + σ2 = 2σ2. Thus,

2



once we experimentally determine the variance V of this observable difference,

we can compute the desired variance σ2 as σ2 =
V

2
.

When we have several different measuring instruments, with unknown stan-
dard deviations σ1, σ2, σ3, . . . , then for each observable difference x̃i − x̃j the
variance is equal to Vij = σ2

i +σ2
j . Thus, once we experimentally determine the

three variances V12, V23, and V13, we can find the desired standard deviations
by solving the corresponding system of three equations with three unknowns:
V12 = σ2

1 + σ2
2 , V23 = σ2

2 + σ2
3 , and V13 = σ2

1 + σ2
3 , whose solution is:

σ2
1 =

V12 + V13 − V23

2
, σ2

2 =
V12 + V23 − V13

2
,

σ2
3 =

V13 + V23 − V12

2
.

Problem: what if distributions are not Gaussian? Empirical analysis
of measuring instruments shows that only slightly more than a half of them
have Gaussian measurement errors [3, 6]. What happens in the non-Gaussian
case? In such cases, sometimes, we simply cannot uniquely reconstruct the
corresponding distributions; see, e.g., [8]. In this paper, we explain when such
a reconstruction is possible and when it is not possible.

2 Idea: Let Us Use Moments

Motivation for using moments. As we have mentioned, a Gaussian distri-
bution with zero mean is uniquely determined by its second moment M2 = σ2.

This means that all higher moments Mk
def
= E[(∆x)k] are uniquely determined

by the value M2.
In general, we may have values of Mk which are different from the corre-

sponding Gaussian values. Thus, to describe a general distribution, in addition
to the second moment, we also need to describe its higher moments as well.

Moments are sufficient to uniquely describe a distribution: reminder.
But even if we know all the moments, will it be sufficient to uniquely determine
the corresponding probability distribution? The answer is yes, it is possible,
and let us provide a simple reminder of why it is possible – and how can we
reconstruct the corresponding distribution.

The usual way to represent a probability distribution of a random variable
∆x is by describing its probability density function (pdf) ρ(∆x). In many
situations, it is convenient to use its characteristic function

χ(ω)
def
= E[exp(i · ω ·∆x)],

where i
def
=

√
−1, i.e.,

χ(ω) =

∫
ρ(∆x) · exp(i · ω ·∆x) d∆x.
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From the mathematical viewpoint, the characteristic function is the Fourier
transform of the pdf, and it is known that we can uniquely reconstruct a function
from its Fourier transform (this reconstruction is known as the inverse Fourier
transform); see, e.g., [1, 2, 5, 10].

On the other hand, if we use Taylor expansion of the exponential function

exp(z) = 1 + z +
z2

2!
+

z3

3!
+ . . .+

zk

k!
+ . . . ,

then the characteristic functions takes the form

χ(ω) = E

[
1 + i · ω ·∆x− 1

2!
· ω2 · (∆x)2 + . . .+

ik

k!
· ωk · (∆x)k + . . .

]
,

i.e.,

χ(ω) = 1− 1

2
· ω2 ·M2 + . . .+

ik

k!
· ωk ·Mk + . . .

Thus, if we know all the moments Mk, we can uniquely reconstruct the charac-
teristic function and thus, uniquely reconstruct the desired pdf.

Important fact: for a symmetric distribution, odd moments are zeros.
In the following analysis, it is important to use the fact that for a symmetric
distribution, i.e., a distribution for which ρ(−∆x) = ρ(∆x), add odd moments
M2s+1 are equal to 0:

M2s+1 =

∫
ρ(∆x) · (∆x)2s+1 d∆x.

Indeed, if we replace ∆x to ∆x′ def
= −∆x, then d∆x = −d∆x′, (∆x)2s+1 =

−(∆x′)2s+1 and thus, the above integral takes the form

M2s+1 = −
∫

ρ(−∆x′) · (∆x′)2s+1 d∆x′ = −
∫

ρ(∆x′) · (∆x′)2s+1 d∆x′,

so M2s+1 = −M2s+1 and hence, M2s+1 = 0.

3 Case When Have Several Identical Measuring
Instruments

Description of the case: reminder. In this cases, we have several mea-
suring instruments, with the same probability distribution and thus, with the
same moments M2, M3, etc. The only available information consists of the dif-
ferences ∆x1 − ∆x2 = x̃1 − x̃2. Based on the observations, we can determine
the probability distribution for each such difference, and thus, we can determine
the moments M ′

k of this difference.
We would like to use these observable moments M ′

k = E[(∆x1 −∆x2)
k] to

find the desired differences Mk = E[(∆x)k].
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What is known: case of second moments. For k = 2, we have M ′
2 = 2M2

and thus, we can uniquely reconstruct the desired second moment M2 from the
observed second moment M ′

2.

Natural next case: third moments. Can we similarly reconstruct the
desired third moment M3 = E[(∆x)3] based on the observed third moment
M ′

3 = E[(∆x1 −∆x2)
3]?

Here,

(∆x1 −∆x2)
3 = (∆x1)

3 − 3 · (∆x1)
2 ·∆x2 + 3 ·∆x1 · (∆x2)

2 − (∆x2)
3,

so, due to linearity of the mean and to the fact that the measurement errors
∆x1 and ∆x2 corresponding to two measuring instruments are assumed to be
independent, we conclude that

M ′
3 = E[(∆x1 −∆x2)

3] = E[(∆x1)
3]− 3 · E[(∆x1)

2] · E[∆x2]+

3 · E[∆x1] · E[(∆x2)
2]− E[(∆x2)

3].

In this case, E[∆xi] = 0 and E(∆x1)
3] = E[(∆x2)

3] = M3, so

M ′
3 = M3 −M3 = 0.

In other words, the observed third moment M ′
3 is always equal to 0, and thus,

carries no information about M3.
So, the only case when we can reconstruct M3 is when we know it already.

One such case is when we know that the distribution is symmetric. In turns out
that in this case, we can reconstruct all the moments and thus, we can uniquely
reconstruct the original probability distribution.

When the probability distribution of the measurement error is sym-
metric, this distribution can be uniquely determined from the ob-
served differences. For a symmetric distribution, all odd moments are equal
to 0. Thus, to uniquely determine a symmetric distribution, it is sufficient to
determine all its even moments M2s. Let us prove, by induction, that we can
reconstruct all these even moments.

We already know that we can reconstructM2. Let us assume that we already
know how to reconstruct the moments M2, . . . , M2s. Let us show how to
reconstruct the next moment M2s+2 = E[(∆x)2s+2]. For this, we will use the
observed moment M ′

2s+2 = E[(∆x1 −∆x2)
2s+2]. Here,

(∆x1 −∆x2)
2s+2 = (∆x1)

2s+2 − (2s+ 2) · (∆x1)
2s+1 ·∆x2+

(2s+ 2) · (2s+ 1)

1 · 2
· (∆x1)

2s · (∆x2)
2 − . . .+

(2s+ 2) · (2s+ 1)

1 · 2
· (∆x1)

2 · (∆x2)
2s − (2s+ 2) ·∆x1 · (∆x2)

2s+1 + (∆x2)
2s+2.

Thus,

M ′
2s+2 = E[(∆x1)

2s+2]− (2s+ 2) · E[(∆x1)
2s+1] · E[∆x2]+
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(2s+ 2) · (2s+ 1)

1 · 2
· E[(∆x1)

2s] · E[(∆x2)
2]− . . .+

(2s+ 2) · (2s+ 1)

1 · 2
· E[(∆x1)

2] · E[(∆x2)
2s]−

(2s+ 2) · E[∆x1] · E[(∆x2)
2s+1] + E[(∆x2)

2s+2],

i.e.,

M ′
2s+2 = M2s+2 +

(2s+ 2) · (2s+ 1)

1 · 2
·M2s ·M2 + . . .+

(2s+ 2) · (2s+ 1)

1 · 2
·M2 ·M2s +M2s+2.

Thus,

2M2s+2 = M ′
2s+2 −

(2s+ 2) · (2s+ 1)

1 · 2
·M2s ·M2 − . . .−

(2s+ 2) · (2s+ 1)

1 · 2
·M2 ·M2s.

We know the value M ′
2s+2, and we assumed that we have already shown that

we can uniquely determine the moments M2, . . . , M2s. Thus, we can indeed
uniquely determine the moment M2s+2.

Induction proves that we can indeed determine all the even moments.

4 Case When Have Several Different Measuring
Instruments

Description of the case: reminder. In this case, we have several measuring
instruments with, in general, different probability distributions. For each of the
measuring instruments i, we want to find the corresponding moments

Mk,i = E[(∆xi)
k].

To find these moments, we can use the observe moments

M ′
k,i,j = E[(∆xi −∆xj)

k].

What is known: case of second moments. For k = 2, we have M ′
2,i,j =

M2,i +M2,j , so we can uniquely reconstruct the desired second moments M2,i

from the observed moments M ′
2,i,j by using the following formulas:

M2,1 =
M ′

2,1,2 +M ′
2,1,3 −M ′

2,2,3

2
, M2,2 =

M ′
2,1,2 +M ′

2,2,3 −M ′
2,1,3

2
,

M2,3 =
M ′

2,1,3 +M ′
2,2,3 −M ′

2,1,2

2
.
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Natural next case: third moments. Can we similarly reconstruct the de-
sired third moments M3,i = E[(∆xi)

3] based on the observed third moments
M ′

3,i,j = E[(∆xi −∆xi)
3]?

Here,

(∆xi −∆xj)
3 = (∆xi)

3 − 3 · (∆xi)
2 ·∆xj + 3 ·∆xi · (∆xj)

2 − (∆xj)
3,

so, due to linearity of the mean and to the fact that the measurement errors
∆xi and ∆xj corresponding to two measuring instruments are assumed to be
independent, we conclude that

M ′
3,i,j = E[(∆xi −∆xj)

3] = E[(∆xi)
3]− 3 · E[(∆xi)

2] · E[∆xj ]+

3 · E[∆xi] · E[(∆xj)
2]− E[(∆xj)

3].

In this case, E[∆xi] = E[∆xj ] = 0 and E(∆xi)
3] = M3,i, so

M ′
3,i,j = M3,i −M3,j .

Since we only know the differences between the their moments, we cannot
uniquely reconstruct these moments M3,i: for example, if we add a constant
to all the values M3,i, all the observed differences will not change.

So, the only case when we can reconstruct the third moments M3,i is when
we have some information about them already. One such case is when we know
that for one of the measuring instruments, the probability distribution of mea-
surement errors is symmetric. In turns out that in this case, we can reconstruct
all the moments and thus, we can uniquely reconstruct all the original proba-
bility distributions.

When the probability distribution of one of the measurement errors
is symmetric, all distributions can be uniquely determined from the
observed differences. Without losing generality, let us assume that the prob-
ability distribution of the measurement error is symmetric for the 1st measuring
instrument. For a symmetric distribution, all odd moments are equal to 0; thus,
we have M2s+1,1 = 0 for all s. Let us prove, by induction, that we can recon-
struct all the moments of all the distributions.

We already know that we can reconstruct the second moments M2,i. Let us
assume that we already know how to reconstruct the moments M2,i, . . . , Mn,i.
Let us show how to reconstruct the next moments Mn+1,i = E[(∆xi)

n+1]. For
this, we will use the observed moments M ′

n+1,i,j = E[(∆xi−∆xj)
n+1]. We will

consider two cases:

• when n is odd, i.e., n = 2s+ 1 and n+ 2 = 2s+ 2, and

• when n is even, i.e., n = 2s and n+ 1 = 2s+ 1.
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First case. Let us first consider the first case. Here,

(∆xi −∆xj)
2s+2 = (∆xi)

2s+2 − (2s+ 2) · (∆xi)
2s+1 ·∆xj+

(2s+ 2) · (2s+ 1)

1 · 2
· (∆xi)

2s · (∆xj)
2 − . . .+

(2s+ 2) · (2s+ 1)

1 · 2
· (∆xi)

2 · (∆xj)
2s − (2s+ 2) ·∆xi · (∆xj)

2s+1 + (∆xj)
2s+2.

Thus,

M ′
2s+2,i,j = E[(∆xi)

2s+2]− (2s+ 2) · E[(∆xi)
2s+1] · E[∆xj ]+

(2s+ 2) · (2s+ 1)

1 · 2
· E[(∆xi)

2s] · E[(∆xj)
2]− . . .+

(2s+ 2) · (2s+ 1)

1 · 2
· E[(∆xi)

2] · E[(∆xj)
2s]−

(2s+ 2) · E[∆xi] · E[(∆xj)
2s+1] + E[(∆xj)

2s+2],

i.e.,

M ′
2s+2,i,j = M2s+2,i +

(2s+ 2) · (2s+ 1)

1 · 2
·M2s,i ·M2,j + . . .+

(2s+ 2) · (2s+ 1)

1 · 2
·M2,i ·M2s,j +M2s+2,j .

Thus,

M2s+2,i +M2s+2,j = sij
def
= M ′

2s+2,i,j −
(2s+ 2) · (2s+ 1)

1 · 2
·M2s,i ·M2,j − . . .−

(2s+ 2) · (2s+ 1)

1 · 2
·M2i ·M2s,j .

We know the value M ′
2s+2,i,j , and we assumed that we have already shown

that we can uniquely determine the moments M2,i, . . . , M2s+1,i. Thus, we can
indeed uniquely determine the values sij = M2s+2,i +M2s+2,j .

Based on these values, we can uniquely reconstruct the moments Mn+1,i =
M2s+2,i as follows:

M2s+2,1 =
s12 + s13 − s23

2
, M2s+2,2 =

s12 + s23 − s13
2

,

M2s+2,3 =
s13 + s23 − s12

2
.

Second case. Let us now consider the second case, when n = 2s and n+ 1 =
2s+1. Since we assumed that for the first measuring instrument, the probability
distribution is symmetric, we get M2s+1,1 = E[(∆x1)

2s+1] = 0.
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For every i ̸= 1, we have

(∆xi −∆x1)
2s+1 = (∆xi)

2s+1 − (2s+ 2) · (∆xi)
2s ·∆x1+

(2s+ 1) · 2s
1 · 2

· (∆xi)
2s−1 · (∆x1)

2 − . . .+

(2s+ 1) · 2s
1 · 2

· (∆xi)
2 · (∆x1)

2s−1 − (2s+ 1) ·∆xi · (∆x1)
2s + (∆x1)

2s+1.

Thus,

M ′
2s+1,i,1 = E[(∆xi)

2s+1]− (2s+ 2) · E[(∆xi)
2s+1] · E[∆x1]+

(2s+ 1) · 2s
1 · 2

· E[(∆xi)
2s−1] · E[(∆x1)

2]− . . .+

(2s+ 1) · 2s
1 · 2

· E[(∆xi)
2] · E[(∆x1)

2s−1]−

(2s+ 1) · E[∆xi] · E[(∆x1)
2s] + E[(∆x1)

2s+1],

i.e.,

M ′
2s+1,i,1 = M2s+1,i +

(2s+ 1) · 2s
1 · 2

·M2s−1,i ·M2,1 + . . .+

Thus,

M2s+1,i = M ′
2s+1,i,1 −

(2s+ 1) · 2s
1 · 2

·M2s,i ·M2,1 − . . . .

We know the value M ′
2s+1,i,1, and we assumed that we have already shown that

we can uniquely determine the moments M2,i, . . . , M2s,i. Thus, we can indeed
uniquely determine the moments Mn+1,i = M2s+1,i.

Conclusion. In both cases, the induction step is proven, so induction proves
that we can indeed determine all the moments of all the distributions.
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