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Abstract—In many practical situations, we know the exact
form of the objective function, and we know the optimal decision
corresponding to each value of the corresponding parameter
x. What should we do if we do not know the exact value of
x, and instead, we only know x with uncertainty – e.g., with
interval uncertainty? In this case, a reasonable idea is to select
one value from the given interval, and to use the optimal decision
corresponding to the selected value. But which value should we
choose? In this paper, we provide a solution to this problem for
the situation in the simplest 1-D case. Somewhat surprisingly, it
turns out the usual practice of selecting the midpoint is rarely
optimal, a better selection is possible.

I. FORMULATION OF THE PRACTICAL PROBLEM

Often, we know the ideal-case solution. One of the main
objectives of science and engineering is to provide an optimal
decision in different situations. In many practical situations,
we have an algorithm that provides an optimal decision based
under the condition that we know the exact values of the
corresponding parameters x.

In practice, we need to take uncertainty into account.
In practice, we usually know x with some uncertainty. For
example, often, we only know an interval [x, x] that contains
the actual (unknown) value x; see, e.g., [8].

A problem. In the case of interval uncertainty, we can imple-
ment decisions corresponding to different values x ∈ [x, x].
Which value should we choose?

Often, practitioners select the midpoint, but is this selection
the best choice?

These are the questions that we answer in this paper.

II. FORMULATION OF THE PROBLEM IN PRECISE TERMS

Decision making: a general description. In general, we
need to make a decision u based on the state x of the
system. According to decision theory, a rational person selects
a decision that maximizes the value of an appropriate function
known as utility; see, e.g., [1], [5], [6], [9].

We will consider situations when or each state x and for
each decision u, we know the value of the utility f(x, u)
corresponding to us choosing u. Then, an optimal decision
uopt(x) corresponding to the state x is the decision for which
this utility is the largest possible:

f(x, uopt(x)) = max
u

f(x, u). (1)

Decision making under interval uncertainty: 1-D case. In
practice, we rarely know the exact state of the system, we
usually know this state with some uncertainty. Often, we do
not know the probabilities of different possible states x, we
only know the bounds on different parameters describing the
state.

In this paper, we will consider the simplest case:
• when the state is characterized by a single parameter, i.e.,

when x is a real number, and
• when a decision is also described by a single number u.

In this case, the bounds means that instead of knowing the
exact state x, we only know the bounds x and x on the state,
i.e., we only know that the actual (unknown) state belongs to
the interval [x, x]. The question is: what decision u should we
make in this case?

We also assume that the uncertainty with which we know x
is relatively small, so in the corresponding Taylor series, we
can only the first few terms in terms of this uncertainty.

Since we already know ho to compute the optimal value
uopt(x) corresponding to a given state x, it may be easier,
instead of coming up with a new algorithm that describes u
as a function of the bounds x and x, to come up with a value
s for which u = uopt(s).

Decision making under interval uncertainty: towards a
precise formulation of the problem. Because of the uncer-
tainty with which we know x, for each possible decision u,
we do not know the exact value of the utility, we only know
that this utility is equal to f(x, u) for some x ∈ [x, x]. Thus,
all we know is that this utility value belongs to the interval[

min
x∈[x,x]

f(x, u), max
x∈[x,x]

f(x, u)

]
. (2)

According to decision theory (see, e.g., [2], [4], [5]), if for
every action a, we only know the interval [f−(a), f+(a)] of
possible values of utility, then we should select the action for
which the following combination takes the largest possible
value:

α · f+(a) + (1− α) · f−(a), (3)

where the parameter α ∈ [0, 1] describes the decision maker’s
degree of optimism-pessimism:

• the value α = 1 means that the decision maker is a
complete optimist, only taking into account the best-case
situations,



• the value α = 0 means that the decision maker is a
complete pessimist, only taking into account the worst-
case situations, and

• intermediate value α ∈ (0, 1) means that the decision
maker takes into account both worst-case and best-case
scenarios.

Resulting formulation of the problem. In these terms our
goal is:

• given the function f(x, u) and the bounds x and x,
• to find the value u for which the following objective

function takes the largest possible value:

α · max
x∈[x,x]

f(x, u)+(1−α) · min
x∈[x,x]

f(x, u) → max
u

. (4)

Comment. Alternatively, we need to find s for which u =
uopt(s) maximizes the objective function (4).

III. ANALYSIS OF THE PROBLEM

We assumed that the uncertainty is small, and that in the
corresponding Taylor expansions, we can keep only a few
first terms corresponding to this uncertainty. Therefore, it is
convenient to describe this uncertainty explicitly.

Let us denote the midpoint
x+ x

2
of the interval [x, x] by

x0. Then, each point x from this interval can be represented
as x = x0+∆x, where we denoted ∆x

def
= x−x0. The range

of possible values of ∆x is [x−x0, x−x0] = [−∆,∆], where

we denoted ∆
def
=

x− x

2
.

The difference ∆x is small, so we should be able to keep
only the few first terms in ∆x.

When x is known exactly, the optimal decision is uopt(x).
Since uncertainty is assumed to be small, the optimal decision
u under interval uncertainty should be close to the optimal
decision u0

def
= uopt(x0) corresponding to the midpoint. So,

the difference ∆u
def
= u − u0 should also be small. In terms

of ∆u, the original value u has the form u = u0 + ∆u.
Substituting x = x0+∆x and u = u0+∆u into the expression
f(x, u) for the utility, and keeping only linear and quadratic
terms in this expansion, we conclude that

f(x, u) = f(x0 +∆x, u0 +∆u) =

f(x0, u0) + fx ·∆x+ fu ·∆u+

1

2
· fxx · (∆x)2 + fxu ·∆x ·∆u+

1

2
· fuu · (∆u)2, (5)

where we denoted

fx
def
=

∂f

∂x
(x0, u0), fu

def
=

∂f

∂u
(x0, u0),

fxx
def
=

∂2f

∂x2
(x0, u0), fxu

def
=

∂2f

∂x∂u
(x0, u0),

fuu
def
=

∂2f

∂u2
(x0, u0).

To find an explicit expression for the objective function
(4), we need to find the maximum and the minimum of this

objective function when u is fixed and x ∈ [x, x], i.e., when
∆x ∈ [−∆,∆]. To find the maximum and the minimum of a
function of an interval, it is useful to compute its derivative.
For the objective function (5), we have

∂f

∂x
= fx + fxx ·∆x+ fxu ·∆u. (6)

In general, the value fx is different from 0; we will ignore a
possible degenerate case when fx = 0. Since we assumed
that the differences ∆x and ∆u are both small, a linear
combination of these two differences is smaller than |fx|.
Thus, on the whole interval ∆x ∈ [−∆,∆], the sign of the

derivative
∂f

∂x
is the same as the sign sx

def
= sign(fx) of the

value fx.
Hence:
• when fx > 0 and sx = +1, then the function f(x, u)

is an increasing function of x; its maximum is attained
when x is attained its largest possible values x, i.e., when
∆x = ∆, and its minimum is attained when ∆x = −∆;

• when fx < 0 and sx = −1, then the function f(x, u)
is an decreasing function of x; its maximum is attained
when x is attained its smallest possible values x, i.e.,
when ∆x = −∆, and its minimum is attained when
∆x = ∆.

In both cases, the maximum of the utility function f(x, u) is
attained when ∆x = sx ·∆ and its minimum is attained when
∆x = −sx ·∆. Thus,

max
x∈[x,x]

f(x, u) = f(x0 + sx ·∆, u0 +∆u) =

f(x0, u0) + fx · sx ·∆+ fu ·∆u+

1

2
· fxx · (∆)2 + fxu · sx ·∆ ·∆u+

1

2
· fuu · (∆u)2, (7)

and

min
x∈[x,x]

f(x, u) = f(x0 − sx ·∆, u0 +∆u) =

f(x0, u0)− fx · sx ·∆+ fu ·∆u+

1

2
· fxx · (∆)2 − fxu · sx ·∆ ·∆u+

1

2
· fuu · (∆u)2. (8)

Therefore, our objective function (4) takes the form

α · max
x∈[x,x]

f(x, u) + (1− α) · min
x∈[x,x]

f(x, u) =

f(x0, u0) + (2α− 1) · fx · sx ·∆+ fu ·∆u+

1

2
·fxx ·(∆)2+(2α−1) ·fxu ·sx ·∆ ·∆u+

1

2
·fuu ·(∆u)2. (9)

To find the optimal value ∆umax = u − u0 for which the
objective function (4) attains its largest possible value, we
differentiate the expression (9) for the objective function (4)
with respect to u and equate the derivative to 0. As a result,
we get:

fu + (2α− 1) · fxu · sx ·∆+ fuu ·∆umax = 0, (10)



i.e.,

∆umax = −fu + (2α− 1) · fxu · sx ·∆
fuu

. (11)

To simplify this expression, let us now take into account
that for each x, the function f(x, u) attains its maximum at
the known value uopt(x). Differentiating expression (5) with
respect to u and equating the derivative to 0, we get:

fu + fxu ·∆x+ fuu ·∆u = 0. (12)

For x = x0, i.e., when ∆x = 0, this maximum is attained
when u = u0, i.e., when ∆u = 0. Substituting ∆x = 0 and
∆u = 0 into the formula (12), we conclude that fu = 0, and
thus, the formula (11) takes a simplified form

∆umax = − (2α− 1) · fxu · sx ·∆
fuu

. (13)

In general, we can similarly expand uopt(x) in Taylor series
and keep only a few first terms in this expansion:

uopt(x) = uopt(x0 +∆x) = u0 + ux ·∆x, (14)

where we denoted ux
def
=

∂uopt

∂x
. Thus, for the optimal

decision, ∆u = uopt(x) − u0 = ux · ∆x. Substituting this
expression and fu = 0 into the formula (12), we conclude
that

fxu ·∆x+ fuu · ux ·∆x = 0

for all ∆x. Thus, fxu + fuu · ux = 0, and

fxu
fuu

= −ux. (15)

Substituting the expression (15) into the formula (13), we
conclude that

∆umax = (2α− 1) · ux · sx ·∆. (16)

Let us describe this solution in terms of the value s ∈ [x, x]
for which u(s) is equal to the optimal value u0 + ∆umax.
Since s ∈ [x, x], we can represent s as s = x0 + ∆s, where
∆s

def
= s− x0. Thus,

u(s) = u(x0 +∆s) = u0 + ux ·∆s. (17)

Equating this expression and the desired value u0 + ∆umax

and using the expression (16) for ∆umax, we conclude that

ux ·∆s = (2α− 1) · ux · sx ·∆, (18)

and thus,
∆s = (2α− 1) · sx ·∆. (19)

Here, sx is the sign of the derivative fx. We have two
options:

• If fx > 0, i.e., if the objective function increases with
x, then sx = 1, and the formula (19) takes the form
∆s = (2α−1) ·∆. In this case, by using the expressions
for x0 and ∆ in terms of x and x, we get:

s = x0 +∆s =
x+ x

2
+ (2α− 1) · x− x

2
=

α · x+ (1− α) · x. (20)

• If fx < 0, i.e., if the objective function decreases with
x, then sx = −1, and the formula (19) takes the form
∆s = −(2α− 1) ·∆. In this case,

s = x0 +∆s =
x+ x

2
− (2α− 1) · x− x

2
=

α · x+ (1− α) · x. (21)

So, we arrive at the following recommendation.

IV. SOLUTION TO THE PROBLEM

Formulation of the problem: reminder. We assume that we
know the objective function f(x, u) that characterizes our gain
in a situation when the actual value of the parameter is x and
we select an alternative u.

We also assume that for every value x, we know the optimal
value uopt(x) for which the objective function attains its
largest possible value.

In a practical situation in which we only know that the
value x is contained in an interval [x, x], we need to select
some value s ∈ [x, x], and then select the alternative uopt(s)
corresponding to the selected value s.

Description of the solution. The solution to our problem
depends on whether the objective function f(x, u) is an
increasing or decreasing function of the parameter x.

If the objective function is an increasing function of x, then
we should select a solution corresponding to

x = α · x+ (1− α) · x, (22)

where α is the optimism-pessimism parameter that character-
izes the decision maker.

If the objective function is a decreasing function of x, then
we should select a solution corresponding to

x = α · x+ (1− α) · x. (23)

Comment. Thus, the usual selection of the midpoint s is only
optimal for decision makers for which α = 0.5; in all other
cases, this selection is not optimal.

Discussion. Intuitively, the above solution is in good accor-
dance with the Hurwicz criterion:

• when the objective function increases with x, the best
possible situation corresponds to x, and the worst possible
situation corresponds to x; thus, the Hurwicz combination
corresponds to the formula (22);

• when the objective function increases with x, the best
possible situation corresponds to x, and the worst possible
situation corresponds to x; thus, the Hurwicz combination
corresponds to the formula (23).

This intuitive understanding is, however, not a proof – Hurwicz
formula combines utilities, not parameter values.



V. FUTURE WORK

We have provided a solution for the simplest case, when
we have only one parameter x describing the system and
only one parameter u describing possible alternatives. It is
desirable to extend our solution to the case when we have
several parameters x and several parameters u.

What if, in addition to the interval, we also have partial
information about the probabilities of different values x from
this interval?

It is also desirable to extend this solution to situations when
instead of the exact interval, we only have fuzzy information
about x [3], [7], [10] – i.e., in terms of α-cuts, we have
different intervals [x, x] for different levels of certainty α.
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