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Abstract

It has been shown that from the purely mathematical viewpoint, the
(traditional) intuitionistic fuzzy logic is equivalent to interval-valued fuzzy
logic. In this paper, we show that if we go beyond the traditional “and”-
and “or”-operations, then intuitionistic fuzzy logic becomes more general
than the interval-valued one.

1 Intuitionistic Fuzzy Logic, Interval-Valued
Fuzzy Logic, and Their Equivalence: A Brief
Reminder

What we plan to do. In this paper, we analyze the relation between in-
tuitionoistic and interval-valued fuzzy logics. In this section, we remind the
readers what are these two logics, and in what sense they are equivalent. After
that, in Section 2, we explain that if we go beyond the traditional “and”- and
“or”-operations, then these two logics are not always equivalent to each other:
actually, the intuitionistic fuzzy logic becomes more general.

Intuitionistic fuzzy logic: a brief reminder. In the traditional fuzzy logic
(see, e.g., [4, 10, 12]), for each statement S, we store the degree d(S) ∈ [0, 1] to
which we believe this statement to be true. In particular, for statements like “x
is small” corresponding to different values x, the corresponding degrees of belief
µ(x) form a function known as the membership function.

In the traditional fuzzy logic, the degree of confidence in the negation ¬S is
estimated as d(¬S) = 1− d(S).
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This approach has a limitation: it does not allow us to distinguish between
the situation when we know practically nothing about a statement S and the
situation when we have several arguments for S and a similar number of ar-
guments against S. In both cases, we do not have any reason to prefer S or
¬S. So, in the traditional fuzzy logic, in both cases, we select d(S) for which
d(S) = d(¬S), i.e., for which d(S) = 0.5.

To take this difference into account, K. Atanassov proposed to separately
store two degrees for each statement S: the degree d+(S) = d(S) to which the

statement S is confirmed and the degree d−(S)
def
= d(¬S) to which the negation

of S is confirmed; see, e.g., [1, 2, 3]. In these terms, the two above situations
are different:

• the situation in which we know nothing about S or ¬S can be described
as setting d(S) = d(¬S) = 0; while

• the situation in which we have many arguments in favor of S and many
arguments in favor of ¬S can be described by setting d(S) = d(¬S) > 0 –
e.g., by setting d(S) = d(¬S) = 0.5.

The only requirement on these two numbers is that overall, they should not
exceed 1: d+(S) + d−(S) ≤ 1. Intuitively, this means that we can have argu-
ments for S and arguments against S, but these arguments should not be in
contradiction to each other, they should be consistent with each other.

For statements like “x is small”, we thus get, for each value x, two degrees
µ+(x) and µ−(x) for which µ+(x) + µ−(x) ≤ 1. Due to the analogy with
intuitionistic logic, in which the negation of a statement does not uniquely
determine this statement, Atanassov called this idea intuitionistic fuzzy logic.

Standard operations in intuitionistic fuzzy logic. In the traditional [0, 1]-
based fuzzy logic, the most widely used “and” and “or”-operations are min(a, b)
and max(a, b). Because of this, Atanassov defined the standard “and”- and
“or”-operations in intuitionistic fuzzy logic as follows:

• a belief in S&S′ means that we believe in S and we believe in S′; thus, if
our degree of belief in S is equal to d+(S) and our degree of belief in S′

is equal to d+(S′), then it is reasonable to gauge our degree of belief in
S&S′ as d+(S&S′) = min(d+(S), d+(S′));

• on the other hand, a belief in ¬(S&S′), i.e., in ¬S ∨ ¬S′ means that we
either believe in ¬S or we believe in ¬S′; thus, if our degree of belief in ¬S
is equal to d−(S) and our degree of belief in ¬S′ is equal to d−(S′), then
it is reasonable to gauge our degree of belief in ¬(S&S′) as d−(S&S′) =
max(d−(S), d−(S′)).

So, if our belief in S is characterized by a pair (d+(S), d−(S)) and our belief in
S′ is characterized by a pair (d+(S′), d−(S′)), then for S&S′, we get

(d+(S&S′), d−(S&S′)) = (min(d+(S), d+(S′)),max(d−(S), d−(S′))).
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Similarly, for S ∨ S′, we get

(d+(S ∨ S′), d−(S ∨ S′)) = (max(d+(S), d+(S′)),min(d−(S), d−(S′))).

For negation, of course, the situation is even simpler: our degree of belief in ¬S
is simply equal to d−(S), and our degree of belief in the negation of ¬S (i.e., in
S itself) is eqqual to d+(S):

(d+(¬S), d−(¬S)) = (d−(S), d+(S)).

Interval-valued fuzzy logic: a reminder. Interval-valued fuzzy logic is
another way to make the distinction between the two above cases. In the
interval-values fuzzy logic, instead of always assigning a single degree d(S) to
each statement, we allow, in situations when an expert is not sure about his or
her degree, to assign an interval [d(S), d(S)] of possible values of this degree;
see, e.g., [6, 7, 9].

This enables us to take into account the above difference:

• in situations when we know nothing about a statement S, instead of select-
ing one value from the interval [0, 1], we honestly say that we do not know
what degree to assign, i.e., we assign the whole interval [d(S), d(S)] = [0, 1]
of possible values;

• on the other hand, in a situation in which we know a lot of arguments for S
and a lot of arguments against S, we can assign a single number d(S) = 0.5,
i.e., a “degenerate” interval [d(S), d(S)] = [0.5, 0.5] that consists of a single
point 0.5.

Traditional “and”- and “or”-operations (and negation) can be naturally ex-
tended to the interval-valued case. Indeed, if we have intervals [d(S), d(S)] and
[d(S′), d(S′)] describing our belief in S and S′, this means that our actual degrees
of belief could be any numbers d(S) and d′(S) from these intervals. For each two
such values, the degree of belief in S&S′ can be computed as min(d(S), d(S′)).
Thus, to describe our confidence in S&S′, it is reasonable to take the set of all
such values min(d(S), d(S′)) corresponding to all possible combinations of d(S)
and d(S′):

{min(d(S), d(S′)) : d(S) ∈ [d(S), d(S)] and d(S′) ∈ [d(S′), d(S′)]}.

Since the minimum is a monotonic function of both its variables:

• its minimum is attained when both d(S) and d(S′) attains their smallest
possible values d(S) and d(S′), and

• its maximum is attained when both d(S) and d(S′) attains their largest
possible values d(S) and d(S′).
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Thus, the above set of possible values is the interval

[min(d(S), d(S′)),min(d(S), d(S′))].

This interval can be viewed as the result of applying the appropriate “and”-
operation to the intervals [d(S), d(S)] and [d(S′), d(S′)] describing the expert’s
degree of belief in S and S′.

Similarly, for the “or”-operation, as the degree of belief in the disjunction
S ∨ S′, we take the set

{max(d(S), d(S′)) : d(S) ∈ [d(S), d(S)] and d(S′) ∈ [d(S′), d(S′)]},

which, due to the monotonicity of max(a, b), takes the form of the interval

[max(d(S), d(S′)),max(d(S), d(S′))].

For negation, we similarly have

{1− d(S) : d(S) ∈ [d(S), d(S)]} = [1− d(S), 1− d(S)].

If we use min and max, then intuitionistic and interval-valued fuzzy
logics are mathematically equivalent. In intuitionistic fuzzy logic, we have
some arguments d+(S) in favor of S, some arguments d−S(S) in favor of ¬S,
and we also have uncertainty – which can be described by the remaining degree
1− d+(S)− d−(S). As we learn more about the statement S, this uncertainty
may be replaced with arguments in favor of S and/or with arguments in favor
of ¬S.

The worst-case scenario, when we end up with the smallest possible confi-
dence in S, is when all the uncertainty is replaced with arguments in favor of
the negation ¬S. In this case, the resulting degree of belief in S is equal to the
original value d+(S).

The best-case scenario, when we end up with the largest possible confidence
in S, is when all the uncertainty is replaced with arguments in favor of S. In this
case, the resulting degree of belief in S is equal to d+(S) = (1−d+(S)−d−(S)) =
1− d−(S).

Thus, in the intuitionistic fuzzy case, the eventual degree of certainty can
take any value from the interval [d+(S), 1 − d−(S)]. It is therefore reasonable
to associate each intuitionistic fuzzy degree (d+(S), d−(S)) with the interval
[d(S), d(S)] = [d+(S), 1− d−(S)].

Vice versa, if we know the values d(S) and d(S), we can easily find the values
d+(S) and d−(S) for which d(S) = d+(S) and d(S) = 1 − d−(S): namely, we
can take d+(S) = d(S) and d−(S) = 1− d(S).

It turns out that this transformation preserves the above “and”-, “or”-, and
“not”-operations. For example, if start with the degrees (d+(S), d−(S) and
(d+(S′), d−(S′)), then we can can compute our degree of belief in S&S′ in two
different ways.
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First, we can directly apply the rules of intuitionistic fuzzy logic and get the
pair

(d1(S&S′), d−1 (S&S′) = (min(d+(S), d+(S′)),min(d−(S), d−(S′))).

Alternatively, we can:

• transform the two degrees into intervals [d(S), d(S)] = [d+(S), 1− d−(S)]
and [d(S′), d(S′)] = [d+(S′), 1− d−(S′)];

• apply the “and”-operation of interval-valued fuzzy logic to get

[d(S&S′), d(S&S′)] = [min(d(S), d(S′)),min(d(S), d(S′))] =

[min(d+(S), d+(S′)),min(1− d−(S), 1− d−(S′))];

• and then transform this interval back into the intuitionistic fizzy value

(d+2 (S&S′), d−2 (S&S′)) =

(min(d+(S), d+(S′)), 1−min(1− d−(S), 1− d−(S′))).

One can show that these two approaches lead to the same result. Indeed,
we can immediately see that:

d1(S&S′) = d2(S&S′) = min(d+(S), d+(S′)).

For the negative degrees, we have d−1 (S&S′) = min(d−(S), d−(S′)) and
d−2 (S&S′)) = 1 − min(1 − d−(S), 1 − d−(S′)). Since the function 1 − x is
decreasing, the smallest value of 1− x is attained when x is the largest, i.e., in
this case:

min(1− d−(S), 1− d−(S′)) = 1−max(d−(S), d−(S′)).

Thus,
d−2 (S&S′) = 1−min(1− d−(S), 1− d−(S′)) =

1− (1−max(d−(S), d−(S′))) = max(d−(S), d−(S′)).

So, we indeed have d−1 (S&S′) = d−2 (S&S′).
Similar results hold for “or”-operations and for negation: we get the exact

same results whether we use operations from the intuitionostic fuzzy logic or
from interval-valued fuzzy logic. In this sense, these two logics are mathemati-
cally equivalent – although their semantics is different.

What we plan to show. The above equivalence results is based on using min
and max. min and max are the simplest possible “and”- and “or”-operations.
In many applications, it is beneficial to consider different “and”- and “or”-
operations. In this paper, we show that if we use different “and’– and “or”-
operations, then, in general, the intuitionistic and interval-valued fuzzy logics
are no longer mathematically equivalent.
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2 In the General Case, Intuitionistic Fuzzy
Logic and Interval-Valued Fuzzy Logic Are
Not Equivalent

Let us consider the general case. In the general case, we can use an arbitrary
pair of an “and”-operation (t-norm) f&(a, b) and an “or”-operation (t-conorm)
f∨(a, b).

In some cases, we use dual operations, for which f∨(a, b) = 1−f&(1−a, 1−b)
and therefore f&(a, b) = 1 − f∨(1 − a, 1 − b), but this is not always the best
choice. For example, if we are looking for the smoothest possible control, then
it makes sense to use a non-dual pair f&(a, b) = a · b and f∨(a, b) = max(a, b).
Similarly, if we are looking for the most stable control, then the optimal selection
is another non-dual pair f&(a, b) = min(a, b) and f∨(a, b) = min(a + b, 1); see,
e.g., [5, 8, 11].

Let us analyze what happens if we apply such a pair in both intuitionistic
and interval-valued fuzzy cases.

Applying a general pair or “and”- and “or”-operations to the intu-
itionostic fuzzy case. Let us start this analysis with the case of “and”. As
we have mentioned, a belief in S&S′ means that we believe in S and that we
believe in S′.

Thus, if our degree of belief in S is equal to d+(S) and our degree of belief
in S′ is equal to d+(S′), then it is reasonable to gauge our degree of belief in
S&S′ as d+(S&S′) = f&(d

+(S), d+(S′)).
On the other hand, a belief in ¬(S&S′), i.e., in ¬S∨¬S′ means that we either

believe in ¬S or we believe in ¬S′. Thus, if our degree of belief in ¬S is equal
to d−(S) and our degree of belief in ¬S′ is equal to d−(S′), then it is reasonable
to gauge our degree of belief in ¬(S&S′) as d−(S&S′) = f∨(d

−(S), d−(S′)).
So, we get

(d+(S&S′), d−(S&S′)) = (f&(d
+(S), d+(S′)), f∨(d

−(S), d−(S′))).

Similar, for “or”, we get

(d+(S ∨ S′), d−(S ∨ S′)) = (f∨(d
+(S), d+(S′)), f&(d

−(S), d−(S′))).

Applying a general pair or “and”- and “or”-operations to the interval-
valued fuzzy case. If we have intervals [d(S), d(S)] and [d(S′), d(S′)] describ-
ing our belief in S and S′, this means that our actual degrees of belief could
be any numbers d(S) and d′(S) from these intervals. For each two such values,
the degree of belief in S&S′ can be computed as f&(d(S), d(S

′)). Thus, to de-
scribe our confidence in S&S′, it is reasonable to take the set of all such values
f&(d(S), d(S

′)) corresponding to all possible combinations of d(S) and d(S′):

{f&(d(S), d(S′)) : d(S) ∈ [d(S), d(S)] and d(S′) ∈ [d(S′), d(S′)]}.

Since f&(a, b) is a monotonic function of both its variables:
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• its minimum is attained when both d(S) and d(S′) attains their smallest
possible values d(S) and d(S′), and

• its maximum is attained when both d(S) and d(S′) attains their largest
possible values d(S) and d(S′).

Thus, the above set of possible values is the interval

[f&(d(S), d(S
′)), f&(d(S), d(S

′))].

Similarly, for the “or”-operation, as the degree of belief in the disjunction
S ∨ S′, we take the set

{f∨(d(S), d(S′)) : d(S) ∈ [d(S), d(S)] and d(S′) ∈ [d(S′), d(S′)]},

which, due to the monotonicity of an “or”-operation f∨(a, b), takes the form of
the interval

[f∨(d(S), d(S
′)), f∨(d(S), d(S

′))].

Comparing the results. Once we know the intuionistic fuzzy degrees
(d+(S), d−(S)) and (d+(S′), d−(S′)) for two statements S and S′, then one
way to get the degree for S&S′ is to apply the formulas described for the
intuitionistic fuzzy case:

(d+1 (S&S′), d−1 (S&S′)) = (f&(d
+(S), d+(S′)), f∨(d

−(S), d−(S′))).

Alternatively, we can:

• transform the two degrees into intervals [d(S), d(S)] = [d+(S), 1− d−(S)]
and [d(S′), d(S′)] = [d+(S′), 1− d−(S′)];

• apply the “and”-operation of interval-valued fuzzy logic to get

[d(S&S′), d(S&S′)] = [f&(d(S), d(S
′)), f&(d(S), d(S

′))] =

[f&(d
+(S), d+(S′)), f&(1− d−(S), 1− d−(S′))];

• and then transform this interval back into the intuitionistic fizzy value

(d+2 (S&S′), d−2 (S&S′)) =

(f&(d
+(S), d+(S′)), 1− f&(1− d−(S), 1− d−(S′))).

By comparing the degrees d1(S, S
′) = (d+1 (S&S′), d−1 (S&S′)) and d2(S, S

′) =
(d+2 (S&S′), d−2 (S&S′)), we can see that the positive degrees are still the same
d+1 (S&S′) = d+2 (S&S′), while the negative degrees are equal only when

d−1 (S&S′) = f∨(d
−(S), d−(S′)) =
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1− f&(1− d−(S), 1− d−(S′)) = d−2 (S&S′).

This condition is always satisfied only if

f∨(a, b) = 1− f&(1− a, 1− b),

i.e., only if the “and”- and “or”-operations are dual. In all other cases, the
the “and”-operations of the intuitionsitic fuzzy logic and of the interval-valued
fuzzy logic are not equivalent.

Similarly, for the “or”-operations, if we directly apply the formulas of the
intuitionistic fuzzy logic, we get

(d+1 (S ∨ S′), d−1 (S ∨ S′)) = (f∨(d
+(S), d+(S′)), f&(d

−(S), d−(S′))).

On the other hand, if we:

• transform the two degrees into intervals [d(S), d(S)] = [d+(S), 1− d−(S)]
and [d(S′), d(S′)] = [d+(S′), 1− d−(S′)];

• apply the “or”-operation of interval-valued fuzzy logic to get

[d(S ∨ S′), d(S ∨ S′)] = [f∨(d(S), d(S
′)), f∨(d(S), d(S

′))] =

[f∨(d
+(S), d+(S′)), f∨(1− d−(S), 1− d−(S′))];

• and then transform this interval back into the intuitionistic fizzy value,
we get

(d+2 (S ∨ S′), d−2 (S ∨ S′)) =

(f∨(d
+(S), d+(S′)), 1− f∨(1− d−(S), 1− d−(S′))).

By comparing the degrees d1(S, S
′) = (d+1 (S ∨ S′), d−1 (S ∨ S′)) and d2(S, S

′) =
(d+2 (S ∨ S′), d−2 (S ∨ S′)), we can see that the positive degrees are the same
d+1 (S ∨ S′) = d+2 (S ∨ S′), but the negative degrees are equal only when

d−1 (S ∨ S′) = f&(d
−(S), d−(S′)) =

1− f∨(1− d−(S), 1− d−(S′)) = d−2 (S ∨ S′).

This condition is always satisfied only if

f&(a, b) = 1− f∨(1− a, 1− b),

i.e., only if the “and”- and “or”-operations are dual – the same condition as for
the “and”-operation. In all other cases, the “or”-operations of the intuitionsitic
fuzzy logic and of the interval-valued fuzzy logic are not equivalent.
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3 Which Pairs of “And”- and “Or”-operations
Lead to Intuitionsitic Fuzzy Sets?

Formulation of the problem. Now that we know that for different pairs of
“and”- and “or”-operations we get results which are not equivalent to interval-
valued fuzzy sets, a natural question is: which pairs of operations are allowed?
When is the result of applying these operations always an intuitionstic fuzzy
set?

Re-wording the corresponding requirement in precise terms.
For two statements S and S′, we get (d+(S&S′), d−(S&S′)) =
(f&(d

+(S), d+(S′)), f∨(d
−(S), d−(S′))). For this pair to form an intuionistic

fuzzy set, we need to make sure that

f&(d
+(S), d+(S′)) + f∨(d

−(S), d−(S′)) ≤ 1.

Let us denote a
def
= d+(S) and b

def
= d+(S′). Once we know d+(S) = a, the only

restriction of d−(S) is that d+(S) + d−(S) ≤ 1, so d−(S) can take any value
from 0 to 1− a. Similarly, once we know d+(S′) = b, then d−(S′) can take any
value from 0 to 1− b.

We want the above inequality to be satisfied for all possible values d−(S).
This is equivalent to requiring that the largest possible value of the left-hand
side of this inequality to be smaller than or equal to 1. An “or”-operation
is increasing in both variables, so its largest value is attained when both its
arguments are the largest, i.e., when d−(S) = 1− a and d−(S′) = 1− b. Thus,
the requirement that for given a = d+(S) and b = d+(S′), the above inequality
holds for all possible values of d−(S) and d−(S′) is equivalent to requiring that

f&(a, b) + f∨(1− a, 1− b) ≤ 1.

So, we need to make sure that this inequality holds for all a and b.
Similarly, we have (d+(S ∨ S′), d−(S ∨ S′)) =

(f∨(d
+(S), d+(S′)), f&(d

−(S), d−(S′))), so for “or”-operation, the require-
ment that we always have an intuitionistic fuzzy set is equivalent to

f∨(d
+(S), d+(S′)) + f&(d

−(S), d−(S′)) ≤ 1.

If we fix a = d−(S) and b = d−(S′), then possible values of d+(S) and d+(S′) can
take any values from 0 to, correspondingly, 1−a and 1−b. Thus, the requirement
that the above inequality always holds is equivalent to f&(a, b)+f∨(1−a, 1−b) ≤
1.

Interestingly, this is exactly the same requirement as for the “and”-operation,
so we conclude that the requirement that the “and”-operation always returns an
intuitionsitic fuzzy set is equivalent to the requirement that the “or”-operation
always returns the intuitionstic fuzzy set. In both cases, we need the same
inequality to hold for all a and b:

f&(a, b) + f∨(1− a, 1− b) ≤ 1.
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Analysis of this requirement. The above requirement can be equivalently
reformulated as

f&(a, b) ≤ 1− f∨(1− a, 1− b).

We have already mentioned that for every “or”-operation f∨(a, b), the expression

f∗
&(a, b)

def
= 1 − f∨(1 − a, 1 − b) is an “and”-operation; this “and”-operation is

called dual. Thus, the above requirement is equivalent to stating that that for
all a and b, we have

f&(a, b) ≤ f∗
&(a, b),

where f&(a, b) is the original “and”-operation and f∗
&(a, b) is an “and”-operation

which is dual to the original “or”-operation f∨(a, b).
Such pair of “and”-operations are common: e.g., a · b ≤ min(a, b) for all a

and b.

Case of Archimedean “and”-operations. Each Archimedean “and”-
operation has the form f&(a, b) = f−1(f(a)+f(b)) for some increasing function
f(x); see, e.g., [4, 10]. For example, a · b = exp(ln(a) + ln(b)).

If the dual operation is also Archimedean, then f∗
&(a, b) = g−1(g(a) + g(b))

for some increasing function g(x). In these terms, the above requirement takes
the form

f−1(f(a) + f(b)) ≤ g−1(g(a) + g(b)).

The left-hand side c of this inequality comes from the requirement that f(a) +
f(b) = f(c). For this value, we have g(a) + g(b) = g(z), where by z, we
denoted the right-hand side of the desired inequality. Since the function g(x) is
monotonic, the condition that c ≤ z is equivalent to g(c) ≤ g(z). So, we require
that if f(a) + f(b) = f(c), then g(c) ≤ g(a) + g(b).

Let us denote A
def
= f(a), B

def
= f(b), and C

def
= f(c) = A + B, and let us

denote h(x)
def
= g(f−1(x)). Then, h(A) = g(f−1(A)) = g(a); similarly h(B) =

g(b), and h(C) = h(A+B) = g(c).
In these terns, the above inequality means that for all possible values of A

and B, we have
h(A+B) ≤ h(A) + h(B).

This property is well-known in mathematics: functions h(x) satisfying this prop-
erty are known as sub-additive.

So, to satisfy the above requirement for Archmedean operations, it is nec-
essary and sufficient to make sure that the auxiliary function h(x) = g(f−1(x))
connecting the generating functions f(x) and g(x) of the two “and”-operations
f&(a, b) and f∗

&(a, b) is sub-additive.
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