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Abstract In engineering practice, usually measurement errors are described by nor-
mal distributions. However, in some cases, the distribution is heavy-tailed and thus,
not normal. In such situations, empirical evidence shows that the Student distribu-
tions are most adequate. The corresponding recommendation – based on empirical
evidence – is included in the International Organization for Standardization guide.
In this paper, we explain this empirical fact by showing that a natural fuzzy-logic-
based formalization of commonsense requirements leads exactly to the Student’s
distributions.

1 Formulation of the Problem

Traditional engineering approach to measurement uncertainty. Traditionally,
in engineering applications, it is assumed that the measurement error is normally
distributed; see, e.g., [12].

This assumption makes perfect sense from the practical viewpoint, it has been
shown that for the majority of measuring instruments, the measurement error is in-
deed normally distributed; see, e.g., [10, 11]. It also makes sense from the theoretical
viewpoint, since in many cases, the measurement error comes from a joint effect of
many independent small components, and, according to the Central Limit Theorem
(see, e.g., [14]), for the large number of components, the resulting distribution is
indeed close to Gaussian.
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Yet another explanation for the normal distribution comes from the fact that usu-
ally, we only have partial information about the distribution. For example, for the
measurement error, we only know the first and the second moments of the corre-
sponding distributions. The first moment – mean – represents a bias. If we know the
bias, we can always subtract it from the measurement result, and thus re-calibrated
measuring instrument will have 0 mean. Thus, we can always safely assume that the
mean is 0. In this case, the second moment is simply the variance V = σ2.

There are many different distributions with 0 mean and given standard devia-
tion σ . For example, we can have a distribution in which we have σ and −σ with
probability 1/2 each. However, such a distribution creates a false certainty – that
no other values of x are possible. Out of all such distributions, it therefore makes
sense to select the one which maximally preserves the original uncertainty. Un-
certainty can be naturally measured by the average number of binary questions
needed to determine the value with a given accuracy. It is described by entropy
S = −

∫
ρ(x) · log2(ρ(x))dx, where ρ(x) is the probability density function (pdf);

see, e.g., [4, 8]. One can easily check that out of all distributions ρ(x) with mean
0 and given standard deviation σ , the entropy is the largest exactly for the normal
distribution.

Sometimes, we encounter heavy-tailed distributions. For the Gaussian (normal)

distribution, the probability density function ρ(x) =
1√

2π ·σ
·exp

(
− x2

2σ2

)
gets to

practically 0 very fast when |x| increases. In other words, the “tails” of this distribu-
tion – i.e., values corresponding to large |x| – are very light, practically negligible.

In practice, however, we sometimes encounter distributions with heavy tails, for
which ρ(x) decreases much slower, often as a power of x: ρ(x)∼ c · x−α ; see, e.g.,
[6, 13].

Power law is not a probability distribution. At first glance, we may want to have
ρ(x) = c · x−α for all x. However, the integral of such a function is always infinite
– for small α , it is infinite at infinity; for larger α , it is infinite at 0. So, we need
expressions for the probability density function ρ(x) which are asymptotically equal
to c · x−α but for which

∫
ρ(x)dx = 1.

In such cases, Student distributions work well. Our experience of geodetic ap-
plications shows that in many such cases, the distribution of the measurement error
is well-represented by a Student distribution ρ(x) = (a+ b · x2)−ν for some a, b,
and ν . This empirical observation clearly applies to other application areas as well,
since the use of the Student distributions is recommended by the International Or-
ganization for Standardization (ISO) [3].

What we do in this paper. In this paper, we explain this empirical fact by showing
that a natural fuzzy-logic-based ([5, 9, 15]) formalization of commonsense require-
ments leads exactly to the Student’s distributions.
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2 Let Us Use Normalization-Invariant Fuzzy Logic Operations

Our main idea. Informally, uncertainty means that the first value is possible, and
the second value is possible, etc. So, when we select a distribution, it makes sense to
select a one for which the degree to which all the values are possible is the largest.
Let us describe this idea in precise terms.

Fuzzy logic and normalization: a brief reminder. Fuzzy logic was motivated
by the fact that many expert statements are formulated by using imprecise (fuzzy)
words from natural language, such as “small” (or, in our case, “possible”). To de-
scribe such terms, for every possible value x of the corresponding quantity, we ask
the expert to estimate the degree µ(x) to which this value satisfies this quantity (e.g.,
“is small”). An expert can mark his/her degree of confidence by selecting a number
from the interval [0,1], so that 1 means full confidence, 0 means no confidence, and
intermediate values indicate partial confidence. The resulting function µ(x) is called
a membership function.

For properties like “small”, there are values (e.g., x = 0) for which are absolutely
sure that this value is small. For such values, we have µ(x) = 1, so the maximum of
the corresponding membership function is equal to 1.

For other properties – e.g., “medium” – we may not have such values. In this
case, the maximum of µ(x) may be smaller than 1. A usual way to deal with such
property is to normalize the corresponding membership function, i.e., to consider a

new function µ ′(x) =
µ(x)

max
y

µ(y)
for which max

x
µ ′(x) = 1.

Normalization is also performed when we get an additional information about
the property. For example, we knew that x is small, now we learn that x≥ 5. In this
case, if simply keep the previous values of µ(x) for x≥ 5 and set all the values µ(x)
for x < 5 to 0, we get a new membership function whose maximum is smaller than
1. So, we normalize it.

Finally, normalization is a must when experts use the available information about
probabilities to come up with the corresponding degrees. Indeed, if we know the
probability density function ρ(x), this means that the larger ρ(x), the more probable
it is to observe a value close to x. Thus, in this case, it is reasonable to take, as
degrees µ(x), either the values ρ(x) themselves, or some values proportional to
ρ(x): µ(x) = c · ρ(x) for some constant c. In this case, normalization leads to the

membership function µ(x) =
ρ(x)

max
y

ρ(y)
. Vice versa, if we have the result µ(x) of

normalizing a pdf, we can reconstruct the original pdf ρ(x) if we multiply µ(x) by
an appropriate constant - the constant to be determined from the requirement that∫

ρ(x)dx = 1; thus: ρ(x) =
µ(x)∫
µ(y)dy

.

Fuzzy logic operations: a reminder. The need for logical operations comes from
the fact that answers to questions of interest often depend on several expert’s state-
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ments. This is exactly our case: we are interested in knowing to what extent the first
value is possible and the second value is possible, etc.

Thus, in addition to knowing the experts’ degrees of confidence in different state-
ments A, B, etc., we also need need to know the expert’s degree of confidence in
different logical combinations of these statements, such as A&B and A∨B.

In our case, we do not just want to know to what extend each value is possible,
we also want to know to what extend the value is possible and the second value is
possible, etc.

Ideally, we should elicit these degrees from the experts, but there are exponen-
tially many such combinations, so such an elicitation is not feasible. Thus, we need
to estimate the expert’s degree of confidence d(A&B) in a composite statement like
A&B based only on his/her degrees of confidence a and b in statements A and B.
The corresponding estimate for d(A&B) is called an “and”-operation (or a t-norm)
and is denoted by f&(a,b).

Since A&B and B&A mean the same, it makes sense to require that our estimates
for these two statements are the same, i.e., that the operation f&(a,b) is commuta-
tive: f&(a,b) = f&(b,a).

Similarly, the fact that A&(B&C) and (A&B)&C mean the same encourages
us to require that f&(a, f&(b,c)) = f&( f&(a,b),c), i.e., that the operation f&(a,b)
is associative.

For associative operations, we can define f&(a,b, . . . ,c) by induction, as the re-
sult of applying the “and”-operation in any order: e.g., as f&(. . .( f&(a,b), . . . ,c).

It also makes sense to require that if A is false, then A&B is false, i.e., that
f&(0,b) = 0 for all b, and that if we increase our degree of confidence in A and/or
in B, our confidence in A&B will not decrease, i.e., that the function f&(a,b) is
(non-strictly) increasing in each of its variables.

Since 1 is usually interpreted as full confidence, if A is absolutely true, then A&B
is equivalent to B for all B, i.e., f&(1,b) = b for all b.

From traditional fuzzy operations to normalization-invariant ones. In some
cases, the degree 1 means absolute confidence, but in other cases the degree 1 comes
from normalization and thus, corresponds to less-than-absolute confidence. In such
cases, it does not make sense to require that f&(1,b) = b, since our degree of con-
fidence in A&B may be smaller than our degree of confidence in the original state-
ment B.

It therefore makes sense to consider a more general class of “and”-operations:
we still keep commutativity, associativity, monotonicity, and the property that
f&(0,b) = 0, but we no longer require that f&(1,b) = b for all b.

What should we require? A natural requirement is that the “and”-operation
should be preserved under normalization. To be more precise, we can compute the
normalized degree of confidence in a statement A&B in two different ways:

• we can take the original degree f&(a,b) and normalize it, by multiplying it by an
appropriate constant λ ;
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• alternatively, we can first normalize the degrees of confidence in A and B, getting
λ ·a and λ ·b, and then apply an “and”-operation to the new degrees, resulting in
the value f&(λ ·a,λ ·b).

It is reasonable to require that these two ways lead to the same estimate. Thus, we
arrive at the following definition.

Definition 1. By a normalization-invariant “and”-operation, we means a function
f&(a,b) which is commutative, associative, (non-strictly) increasing in each of the
variables, and satisfies the properties f&(0,b) = 0 and

f&(λ ·a,λ ·b) = λ · f&(a,b)

for all λ ≥ 0, a≥ 0, and b≥ 0.

Let us describe all possible normalization-invariant “and”-operations. Sim-
ilar to the case of the usual “and”-operations [7], one can prove that for ev-
ery normalization-invariant “and”-operation and for every ε > 0, there exists a
normalization-invariant “and”-operation of the type f&(a,b) = f−1( f (a) + f (b))
for some strictly decreasing function f (x). Thus, for all practical purposes, we can
safely assume that our operation has this form.

For such functions, c = f&(a,b) is equivalent to f (c) = f (a)+ f (b). Thus, scale-
invariance means that f (c)= f (a)+ f (b) implies f (λ ·c)= f (λ ·a)+ f (λ ·b). Thus,
for every λ , the transformation T from f (a) to f (λ ·a) is additive: if C = A+B, then
T (C) = T (A)+ T (B), i.e., in other words, T (A+B) = T (A)+ T (B). It is known
(see, e.g., [1, 2]) that every monotonic additive function is linear. Thus, f (λ · a) =
c(λ ) · f (a) for all a and λ . For monotonic functions f (a), the only solution for this
functional equation is f (a) =C ·a−α for some C and α [1, 2].

For this function, the equality f (c)= f (a)+ f (b), i.e., C ·c−α =C ·a−α +C ·b−α ,
is equivalent to c−α = a−α +b−α , i.e., to c = f&(a,b) = (a−α +b−α)−1/α .

3 Resulting Derivation of the Student Distributions

We want to select a membership function µ(x) which is the best fit with our re-
quirement that all possible values x are indeed possible. In other words, we want to
maximize the degree to which x1 is possible, and x2 is possible, etc. For each value
xi, the degree to which this value is possible is equal to µ(xi).

Now that we have a general formula for the normalization-invariant “and”-
operation, we can describe the degree to which x1 is possible and x2 is possible
as

f&(µ(x1),µ(x2), . . .) = ((µ(x1))
−α +(µ(x2))

−α + . . .)−1/α .

Maximizing this degree is equivalent to minimizing the sum (µ(x1))
−α +

(µ(x2))
−α + . . . In the limit, when we take a denser and denser grid of values xi

and make them cover a longer and longer interval, this sum turns into an integral∫
(µ(x))−α dx.
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We need to find the smallest possible value of this integral under the constraints
that the mean is 0 and that the variance is equal to a given value σ2. These constrains

have the form
∫

x ·ρ(x)dx = 0 and
∫

x2 ·ρ(x)dx = σ2, where ρ(x) =
µ(x)∫
µ(y)dy

, i.e.,

the form
∫

x · µ(x)∫
µ(y)dy

dx = 0 and
∫

x2 · µ(x)∫
µ(y)dy

dx = σ
2. These equalities can

be simplified into
∫

x ·µ(x)dx = 0 and
∫

x2 ·µ(x)dx−σ2 ·
∫

µ(x)dx = 0. Thus, we
arrive at the following constraint optimization problem:
Minimize

∫
(µ(x))−α dx under the constraints∫

x ·µ(x)dx = 0 and
∫

x2 ·µ(x)dx−σ
2 ·
∫

µ(x)dx = 0.

Lagrange multiplier method reduces this constraint optimization problem to the un-
constrained optimization one∫
(µ(x))−α dx+λ1 ·

∫
x ·µ(x)dx+λ2 ·

(∫
x2 ·µ(x)dx−σ

2 ·
∫

µ(x)dx
)
→min .

Differentiating the left-hand side with respect to µ(x) and equating the derivative to
0, we conclude that

−α · (µ(x))−α−1 +λ1 · x+λ2 · x2−λ2 ·σ2 = 0,

i.e., that µ(x) = (a0+a1 ·x+a2 ·x2)−ν for some ai and ν , i.e., equivalently, the form
µ(x) = c · (1+a1 · x+a2 · x2)−ν .

The pdf ρ(x) =
µ(x)∫
µ(y)dy

differs from the membership function by a multiplica-

tive constant, so we also have ρ(x) = const · (1+ a1 · x+ a2 · x2)−ν . The quadratic
expression inside can be described as a2 ·(x−x0)

2+const for some x0. This formula
is symmetric with respect to x0 thus its mean is x0. Since we know that the mean
should be 0, we get x0 = 0, hence ρ(x) = const · (1+a2 · x2)−ν .

Taking into account that we should have
∫

ρ(x)dx = 1, we get exactly Student
distributions – so we indeed get the desired justification!
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