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Abstract

In many engineering and scientific problems, there is a need to find
the parameters of a dependence from the experimental data. There exist
several software packages that find the values for these parameters – values
for which the mean square value of the absolute approximation error is the
smallest. In practice, however, we are often interested in minimizing the
mean square value of the relative approximation error. In this paper, we
show how we can use the absolute-error-minimizing software to minimize
the relative error.

1 Formulation of the Problem

Practical problem. In many practical situations, we know that the depen-
dence between the quantity y and related quantities x1, . . . , xn has the known
form, i.e., the form y = f(x1, . . . , xn, c1, . . . , cm) with a known function f and
unknown values of the coefficients c1, . . . , cm.

Examples. For example, we may know that y linearly depends on xi, in which
case the desired dependence has the form

y = c1 · x1 + . . .+ cn · xn + cm+1

for some unknown values ci.
We may have a quadratic dependence, in which case

y = c1 · x1 + . . .+ cn · yn + cn+1 + cn+2 · x2
1 + cn+3 · x1 · x2 + . . .

These two cases are particular cases of a more general situation in which the
dependence of the expression f(x1, . . . , xn, c1, . . . , cm) on the coefficients cj is
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linear, i.e., in which

f(x1, . . . , xn, c1, . . . , cm) =
m∑
j=1

cj · fj(x1, . . . , xn)

for given functions f1(x1, . . . , xn), . . . , fm(x1, . . . , xn).
We may also have a more complex dependence, in which the dependence on

the coefficients cj is nonlinear. For example, in radioactive decay, once we know
the initial amount y0 of the radioactive material, then the amount y remaining
after time x1 is described by the formula y = y0 · e−c1·x1 , for an appropriate
to-be-determined coefficient c1.

What information we have to solve this problem. In the above situation,
it is necessary to determine the values of these parameters c1, . . . , cm from the
experimental data.

In engineering, geosciences, and in many other application areas, this
is known as the inverse problem – as opposed to the forward problem,
when we know the values of xi and cj , and we use the dependence y =
f(x1, . . . , xn, c1, . . . , cm) to predict the value of the quantity y.

To solve the inverse problem, we can use the results coming out of several
(K) situations in which both y and xi have been measured, and we use the

results y(k) and x
(k)
i of these measurements to find the coefficients ci for which,

for each k from 1 to K, we have

y(k) ≈ f
(
x
(k)
1 , . . . , x(k)

n , c1, . . . , cm

)
.

It is important to emphasize that since measurements are never absolutely ac-
curate – there is always some measurement error – the measurement result y(k)

is only approximately equal to the quantity f
(
x
(k)
1 , . . . , x

(k)
n , c1, . . . , cm

)
; see,

e.g., [2].

There exist many software packages that minimize the absolute error.
The standard approach to solving the above problem is the Least Squares ap-
proach (see, e.g., [3]), in which we find the coefficients c1, . . . , cm for which the
mean square value of the (absolute) approximation error is minimized, i.e., that

minimize the expression
K∑

k=1

(
∆y(k)

)2
, where by ∆y(k, we denoted the (absolute)

approximation errors

∆y(k)
def
= y(k) − f

(
x
(k)
1 , . . . , x(k)

n , c1, . . . , cm

)
.

For example, MatLab has such programs – both for the linear and for the
nonlinear cases. In addition, neural network packages – in particular, the Mat-
Lab neural network toolbox – minimize the above sum of squares; see, e.g., [1].

Some of these packages only deal with situations in which the dependence
f (x1, . . . , xn, c1, . . . , cm) is linear in terms of the coefficients. In these cases, the
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above problem takes the form

y(k) ≈
m∑
j=1

cj · fj
(
x(1), . . . , x(k)

n

)
,

and the Least Squares idea means minimizing the sum
m∑
j=1

(
∆y(k)

)2
, where

∆y(k) = y(k) −
m∑
j=1

cj · fj
(
x(1), . . . , x(k)

n

)
.

These packages usually assume that we know the values q(k) and p
(k)
1 , . . . , p

(k)
m

for all k from 1 to K, and they find the coefficients c1, . . . , cm for which the sum

K∑
k=1

q(k) −
m∑
j=1

cj · p(k)j

2

attains its smallest possible value. To apply such a package to our problem, it

is sufficient to take q(k) = y(k) and p
(k)
j = fj

(
x
(k)
1 , . . . , x

(k)
n

)
.

Often, we need to minimize relative errors instead. While in many
practical situations, minimizing the absolute approximation errors is a reason-
able idea, in many other situations, it is more appropriate to minimize relative
approximation errors

δy(k)
def
=

∆y(k)

y(k)
,

i.e., to be precise, to minimize the sum
K∑

k=1

(
δy(k)

)2
.

For example, if the desired dependence covers a wide range of possible values
of y, e.g., ranging from y = 10 to y = 1000, it makes more sense to want to
approximate all these values with the same relative accuracy – e.g., 5% or 10% –
than with the same absolute accuracy, say, 5 – in the case of absolute accuracy,
we have a very crude 50% accurate approximation for small values y ≈ 10 and
an unnecessarily accurate (0.5% accurate) approximation of values y ≈ 1000
(unnecessarily accurate since we usually cannot even measure y with such a
high accuracy).

Problem. The problem is that, in contrast to minimization of absolute error,
for which there are several available software packages, not many packages are
available for minimizing the relative error.

In principle, we can write our own code for solving this problem, but it would
be much easier if we could simply use the existing software.

What we do in this paper. In this paper, we show how we can use absolute-
error-minimizing software to minimize relative errors. In Section 2, we describe
how to do it for the case when the dependence on the coefficients cj is linear. In
Section 3, we consider the general case, when the dependence on the coefficients
cj may be non-linear.
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2 Case When the Dependence on the Coeffi-
cients cj is Linear

Description of the case: reminder. We assume that

y =

m∑
j=1

cj · fj (x1, . . . , xn) ,

for known functions f1 (x1, . . . , xn), . . . , fm (x1, . . . , xm). Based on the results

y(k) and x
(k)
i of measuring the corresponding quantities, we want to find the

coefficients c1, . . . , cm for which

y(k) ≈
m∑
j=1

cj · fj
(
x
(k)
1 , . . . , x(k)

n

)
for all k from 1 to K. To be more precise, we want to find the values c1, . . . , cm

for which the sum
K∑

k=1

(
δy(k)

)2
is the smallest possible, where δy(k)

def
=

∆y(k)

y(k)

and

∆y(k)
def
= y(k) −

m∑
j=1

cj · fj
(
x
(k)
1 , . . . , x(k)

n

)
.

We would like to use a Least Squares package. To solve our problem,
we would like to use a Least Squares package, that, given the values q(k) and

p
(k)
1 , . . . , p

(k)
m for all k from 1 to K, find the values cj that minimize the sum

K∑
k=1

p(k) −
m∑
j=1

cj · p(k)j

2

.

Analysis of the problem. Substituting the expression

∆y(k) = y(k) −
m∑
j=1

cj · fj
(
x
(k)
1 , . . . , x(k)

m

)
into the definition of the relative approximation error δy(k), we conclude that

δy(k) = 1−
m∑
j=1

cj ·
fj

(
x
(k)
1 , . . . , x

(k)
n

)
y(k)

.

Thus, the problem of minimizing the sum
K∑

k=1

(
δy(k)

)2
of the squares of relative

errors is equivalent to the problem of minimizing the sum

K∑
k=1

q(k) −
m∑
j=1

cj · pk)j

2

,
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with q(k) = 1 and p
(k)
j =

fj

(
x
(k)
1 , . . . , x

(k)
n

)
y(k)

. So, we arrive at the following

recommendation.

Recommendation. Our recommendation is to find the coefficients c1, . . . , cm
by applying a Least Squares package to the values q(k) = 1 and

p
(k)
j =

fj

(
x
(k)
1 , . . . , x

(k)
n

)
y(k)

.

3 General (Possibly Nonlinear) Case

First idea: description. The above approach can be naturally extended to
the nonlinear case. Namely, minimizing the sum of relative errors

K∑
k=1

(
δy(k)

)2

=

K∑
k=1

y(k) − f
(
x
(1)
1 , . . . , x

(k)
n , c1, . . . , cm

)
y(k)

2

is equivalent to minimizing the sum of the absolute differences

K∑
k=1

(
z(k) − g

(
x
(1)
1 , . . . , x(k)

n , y(k), c1, . . . , cm

))2

,

where z(k) = 1 and

g (x1, . . . , xn, y, c1, . . . , cm)
def
=

f (x1, . . . , xn, c1, . . . , cm)

y
.

Thus, we arrive at the following recommendation.

First idea: resulting recommendations. To minimize the relative error,
apply the absolute-error-minimizing software to find the coefficients c1, . . . , cm
from the condition that

z(k) ≈ g
(
x
(1)
1 , . . . , x(k)

n , y(k), c1, . . . , cm

)
for k = 1, . . . ,K, where we denoted z(k) = 1 and

g (x1, . . . , xn, y, c1, . . . , cm)
def
=

f (x1, . . . , xn, c1, . . . , cm)

y
.

Second idea: description. Alternatively, we can apply the existing software
to approximate ln (y) by the dependence ln (f (x1, . . . , xn, c1, . . . , xm)), i.e., find
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the coefficients c1, . . . , cm for which the sum
K∑

k=1

(
∆Y (k)

)2
is the smallest pos-

sible, where ∆Y (k) def
= Y (k) − F

(
x
(k)
1 , . . . , x

(k)
n , c1, . . . , cm

)
, Y (k) def

= ln
(
y(k)

)
and

F (x1, . . . , xn, c1, . . . , cm)
def
= ln (f (x1, . . . , xn, c1, . . . , cm)) .

Second idea: justification. Measurement errors are usually relatively small,
so we can safely ignore terms which are quadratic (or of higher order) in terms
of the corresponding error. For example, if we measure with accuracy 10%, then
the square of the corresponding measurement error is about 1%, which is much
smaller than 10% and can, therefore, be safely ignored.

In our case, by definition of the approximation error ∆y(k), we have

y(k) = f
(
x
(k)
1 , . . . , x(k)

n , c1, . . . , cm

)
+∆y(k).

So,

ln
(
y(k)

)
= ln

(
f
(
x
(k)
1 , . . . , x(k)

n , c1, . . . , cm

)
+∆y(k)

)
.

If we expand this expression in Taylor series in terms of ∆y(k) and take into

account that the derivative of logarithm ln (x) is
1

x
, we conclude that

ln
(
y(k)

)
= ln

(
f
(
x
(k)
1 , . . . , x(k)

n , c1, . . . , cm

))
+

1

f
(
x
(k)
1 , . . . , x

(k)
n , c1, . . . , cm

) ·∆y(k) + . . .

As we have mentioned, in this expansion, we can safely ignore terms which are
quadratic (or of higher order) in ∆y(k), thus

ln
(
y(k)

)
= ln

(
f
(
x
(k)
1 , . . . , x(k)

n , c1, . . . , cm

))
+

1

f
(
x
(k)
1 , . . . , x

(k)
n , c1, . . . , cm

) ·∆y(k).

The expression in the denominator is equal to y(k) −∆y(k), thus

ln
(
y(k)

)
= ln

(
f
(
x
(k)
1 , . . . , x(k)

n , c1, . . . , cm

))
+

1

y(k) −∆y(k)
·∆y(k).

Expanding again in terms of ∆y(k) and ignoring quadratic and higher order
terms, we conclude that

ln
(
y(k)

)
= ln

(
f
(
x
(k)
1 , . . . , x(k)

n , c1, . . . , cm

))
+

∆y(k)

y(k)
,
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i.e., by definition of the relative error δy(k), that

ln
(
y(k)

)
− ln

(
f
(
x
(k)
1 , . . . , x(k)

n , c1, . . . , cm

))
= δy(k).

Thus,

∆Y (k) = Y (k) − F
(
x
(1)
1 , . . . , x(k)

n , c1, . . . , cm

)
=

ln
(
y(k)

)
− ln

(
f
(
x
(k)
1 , . . . , x(k)

n , c1, . . . , cm

))
= δy(k),

i.e., ∆Y (k) = δy(k).

So, minimizing the sum
K∑

k=1

(
∆Y (k)

)2
is indeed equivalent to the minimiza-

tion of the mean squares value of the relative error, i.e., to the minimization of

the sum
K∑

k=1

(
δy(k)

)2
. Hence, we arrive at the following recommendation.

Second idea: recommendation. To solve the desired relative-error-
minimization problem, we compute the values Y (k) def

= ln
(
y(k)

)
and form a

new function F (x1, . . . , xn, c1, . . . , cm) = ln (f (x1, . . . , c1, . . . , cm)).
Then, we apply the absolute-error-minimizing package to find the coefficients

c1, . . . , cm for which

Y (k) ≈ F
(
x
(k)
1 , . . . , x(k)

n , c1, . . . , cm

)
for all k = 1, . . . ,K.
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