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Abstract It is known that symmetry ideas can explain the empirical success of many
non-linear models. This explanation makes these models theoretically justified and
thus, more reliable. However, the models remain non-linear and thus, identification
or the model’s parameters based on the observations remains a computationally ex-
pensive nonlinear optimization problem. In this paper, we show that symmetry ideas
can not only help to select and justify a nonlinear model, they can also help us de-
sign computationally efficient almost-linear algorithms for identifying the model’s
parameters.

1 Formulation of the Problem

Need for prediction. In many real-life situations, we have a quantity x that changes
with time t, and we want to use the previous values of this quantity to predict its
future values. For example, we know how the stock price has changed with time,
and we want to use this information to predict future stock prices.

In many cases, such a prediction is possible. For example, when weather records
show clear yearly cycles, it is reasonable to predict that a similar yearly cycle will
be observed in the future as well.
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How can we predict: main idea. A usual approach to prediction is that we select
some model, i.e., some parametric family of functions f (t,c1, . . . ,cℓ). Based on the
available observations, we find the parameters c̃i which provide the best fit, and then
we use these values c̃ j to predict the future values of the quantity x as

x(t)≈ f (t, c̃1, . . . , c̃ℓ).

Examples of models. In some cases, the dependence of the quantity x on time t is
polynomial, in which case

f (t,c1, . . . ,cℓ) = c1 + c2 · t + c3 · t2 + . . .+ cℓ · tℓ−1.

For a simple periodic process, the dependence of the quantity x on time is de-
scribed by a sinusoid, in which case

f (t,c1,c2,c3) = c1 · sin(c2 · t + c3).

To get a more realistic description of a periodic process, we need to take into account
higher harmonics, i.e., assume that

f (t,c1,c2, . . .) = c1 · sin(c2 · t + c3)+ c4 · sin(2c2 · t + c5)+ . . .

For a simple radioactive decay, the amount of radioactive material decreases ex-
ponentially:

f (t,c1,c2) = c1 · exp(−c2 · t).

A more realistic model takes into account that often, a radioactive material is a
mixture of several different isotopes, with different half-lives. In this case,

f (t,c1,c2, . . .) = c1 · exp(−c2 · t)+ c3 · exp(−c4 · t)+ . . .

Other models include log-periodic model

f (t,c1,c2, . . . ,c7) = c1 + c2 · (c3 − t)c4 + c5 · (c3 − t)c4 · cos(c6 · ln(c3 − t)+ c7)

which is used to predict economic crashes [2, 4, 5, 7, 8, 9, 10, 11, 12, 14, 21, 22, 23,
24, 25, 26], or a model

f (t,c1,c2,c3) = c1 · ln(t − c2)+ c3

that describes, for some software packages, the dependence of the number of un-
covered faults on time t; see, e.g., [15, 16].

A more complex example is a neural network, when c j are the corresponding
weights; see, e.g., [1, 6].

How do we estimate the parameters? Usually, the Least Squares method is used
to estimate the values of the parameters c1, . . . ,cℓ.
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In other words, based on the values x(ti) observed at different moments of time
ti, 1 ≤ i ≤ n, we find the values c j for which the mean square approximation error is
the smallest possible, i.e., for which the following expression is minimized:

n

∑
i=1

(xi − f (ti,c1, . . . ,cℓ))2. (1)

Identifying the model’s parameters is often computationally intensive. In some
cases – e.g., for the polynomial dependence – the model f (x,c1, . . . ,cℓ) linearly
depends on the values of the parameters c j. In this case, the minimized expression
(1) is quadratic in c j.

We can find the minimum of a function of several variables by equating all its
partial derivatives to 0. For a quadratic objective function (1), all the partial deriva-
tives are linear functions of c j. Thus, by equating them all to 0, we get a system of
linear equations for the unknowns c j. For solving systems of linear equations, there
are many efficient algorithms, so in this case, the problem of identifying the model’s
parameters is computationally easy.

On the other hand, in general, the dependence of the model on the parameters
c j is non-linear. Thus, the objective function (1) is more complex than quadratic.
It is known that, in general, optimization is computationally intensive – for exam-
ple, it has been proven that optimization is an NP-hard problem, meaning that it as
complex as a computational problem can be; see, e.g., [13, 17, 18].

It is therefore desirable to select models for which identification is easier. This
bring us to a question of how we select models in the first place.

How are models selected in the first place? Sometimes, we have an good under-
standing of the processes that cause the quantity x to change. In such situations, we
have a theoretically justified model.

In most cases, however, the model is selected empirically. We try different mod-
els, and we select the one for which, for the same number of parameters, the ap-
proximation error is the smallest.

In many cases, the empirical efficiency of selected models can be explained by
symmetry ideas. In an empirical choice, we only compare a few possible models.
As a result, the fact that the selected model turned out to be better than others does
not necessarily mean that this model is indeed the best for a given phenomenon:
there are, in principle, many other models that we did not consider in our empirical
comparison.

Good news is that in many cases, the empirical selection can be confirmed by a
theoretical analysis. For example, often, it turns out that the empirically successful
model can be derived from the natural symmetry requirements; see, e.g., [16]. This
theoretical justification compares the selected model not just with a few others, but
with all possible models – thus, it makes us more confident that the selected model
is indeed the best.
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But the model remains computationally intensive. The fact that the empirically
selected model is theoretically justified does not change its formulas. So, if the de-
pendence of this model on the corresponding parameters c j is non-linear, the prob-
lem of identifying parameters of this model remains computationally intensive.

What we do in this paper: we show that symmetries can help in parameter
identification too. In this paper, we show that symmetries are not only helpful in
selecting a model, they can also help design computationally efficient algorithms
for identifying parameters of the selected model.

Structure of this paper. In Section 2, we briefly recall what symmetries are used to
derive the corresponding models, how exactly these models are derived, and what
are the resulting models. In Section 3, we analyze the problem of determining pa-
rameters of these models, and we show how to make this identification computa-
tionally easier.

2 How Symmetries Justify Models: A Brief Reminder

Preliminaries In some practical cases, the changes in the quantity x come from a
single and simple process – this is the situation, e.g., with most oscillations. In most
practical cases, however, many different factors lead to changes in x. Some of these
changes are independent, and may have different intensity. Thus, the resulting value
of the quantity x can be represented as a linear combination of the dependencies
corresponding to different factors.

In precise terms, this means that we consider models of the type

C1 · e1(t)+ . . .+Cm · em(t) (2)

for some functions e j(t) (which may depend on other parameters as well).

• This is the case for polynomials, when e1(t) = 1, e2(t) = t, e3(t) = t2, etc.
• This is the case for periodic processes, when e1(t) is the main sinusoid, e2(t) is

the sinusoid corresponding to double frequency, e3(t) is the sinusoid correspond-
ing to triple frequency, etc.

• This is the case for radioactive decay, where e j(t) are exponential functions with
different hall-life.

In all these cases, the functions e j(t) are differentiable (smooth). So, without losing
generality, we can assume that these functions are smooth.

In these terms, selecting a model means selecting the corresponding functions

e1(t), . . . ,em(t).

What natural symmetries should we consider? Many physical processes – such
as radioactive decay – do not have a starting point, their general properties do not
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change whether we consider the piece of a radioactive material now or in a hundred
years. The exact amount of the material will decrease, but its properties – and its rate
of decay – will remain the same. In such situations, the observed value x(t) changes
with time, but the whole family of functions (2) should not change if we simply start
counting time from a different starting point.

If we start to count time from a starting point which is t0 moments in the future,
then moment t in the new scale corresponds to moment t + t0 in the original scale.
Thus, if in the new scale, the set of functions has the form (2), then these same
functions in the original time scale have the form

C1 · e1(t + t0)+ . . .+Cm · em(t + t0). (3)

The above natural requirement then says that the families (2) and (3) must coincide
– i.e., that:

• every function of type (2) can be expressed in the form (3) (with, of course,
different constants C j), and

• vice versa, every function of type (3) can be expressed in the form (2).

In other cases, there is a natural starting (or ending) point t0, but there is no
preferred time unit. In such cases, it is reasonable to require that if we use a different
unit for measuring time, nothing will change – in particular, the class (2) of possible
dependencies should not change.

If we keep t0 as the starting point, and choose a measuring unit which is λ times
smaller, then we get a new numerical value t ′ = t0+λ ·(t−t0). It is therefore reason-
able to require that if we make this change, the family of approximating functions
remains the same, i.e., that the family

C1 · e1(t0 +λ · (t − t0))+ . . .+Cm · em(t0 +λ · (t − t0)) (4)

coincides with the original family (2).

What can we conclude from these symmetry requirements. Let us consider the
two cases separately:

• first, the case (3) of shift-invariance, and
• then, the case (4) of scale-invariance.

Case of shift-invariance. In the shift-invariant case, every function from the family
(3) also belongs to the family (2).

In particular, for every j and t0, the function e j(t + t0) belongs to the family (3):
it corresponds to the case when C j = 1 and C j′ = 0 for all j′ ̸= j. Thus, we conclude
that the function e j(t + t0) belongs to the family (2), i.e., that

e j(t + t0) =C1 j(t0) · e1(t)+ . . .+Cm j(t0) · em(t) (5)

for some coefficients C j′ j(t0) depending on the shift t0.
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For each t, if we consider the equation (5) at m different moments of time t =
t1, . . . , tm, then we get the following system of m linear equations with m linear
unknowns C1 j(t0), . . . ,Cm j(t0):

e j(t1 + t0) =C1 j(t0) · e1(t1)+ . . .+Cm j(t0) · em(t1),

e j(t2 + t0) =C1 j(t0) · e1(t2)+ . . .+Cm j(t0) · em(t2),

. . . (6)

e j(tm + t0) =C1 j(t0) · e1(tm)+ . . .+Cm j(t0) · em(tm).

The solution to a linear system can be explicitly described by the Cramer’s rule
(see. e.g., [19]), according to which this solution is a ratio of two determinants –
i.e., a differentiable function of the right-hand sides and of the coefficients at the
unknowns. Since the functions e j(t) are smooth, the right-hand sides and the coeffi-
cients are also smooth, and thus, thus the solution C j′ j(t0) is a differentiable function
of differentiable functions – thus, a smooth function itself.

Since the functions e j′(t) and C j′ j(t0) are all differentiable, we can differentiate
both sides of equation (5) by t0 and take t0 = 0. As a result, for each j, we get the
following differential equation:

e′j(t) = c1 j · e1 + . . .+ cm j · em, (7)

where e′j, as usual, denotes the derivatives, and c j′ j
def
= C′

j′ j(0).
Thus, m functions e1(t), . . . , em(t) satisfy a system of m linear differential equa-

tions (7) with constant coefficients. A general solution to this system of equations is
well known: it is a linear combination of functions of the type tk · exp(λ · t), where
λ are eigenvalues of the matrix c j′ j and factors t, t2, . . . , tq appear if the correspond-
ing eigenvalue is multiple, with multiplicity q; see, e.g., [20]. Please note that the
eigenvalues are, in general, complex numbers λ = a+b · i, in which case

exp(λ · t) = exp(a · t) · (cos(b · t)+ i · sin(b · t)).

In real-valued terms, each function e j(t) is thus a linear combination of functions of
the type

tk · exp(a · t) · (cos(b · t)+ i · sin(b · t)).

Case of scale-invariance. Let us now consider the case of scale-invariance with
respect to the special point t0. To simplify our analysis, let us consider, instead of
time, an auxiliary variable τ def

= ln(t−t0). In terms of this auxiliary variable, we have
t = t0+exp(τ), and the original functions ei(t) take the form Ei(τ)= ei(t0+exp(τ)).

In terms of the new variable τ , the scaling transformation takes the form τ →
τ+τ0, where τ0

def
= ln(λ ). Thus, for the new functions E j(τ), scale-invariance means

that the original class of functions
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C1 ·E1(τ)+ . . .+Cm ·Em(τ)

coincides with the transformed family

C1 ·E1(τ + τ0)+ . . .+Cm ·Em(τ + τ0).

We already know what this condition implies: that each function E j(τ) is a linear
combination of functions

τk · exp(λ · τ) = τk · exp(a · τ) · (cos(b · τ)+ i · sin(b · τ)).

Substituting τ’s definition τ = ln(t − t0) into this formula, and taking into account
that exp(τ) = exp(ln(t−t0)) = t−t0 and thus, exp(a ·τ) = (exp(τ))a = (t−t0)a, we
conclude that each function e j(t) = E j(τ) = E j(ln(t − t0)) is a linear combination
of functions of the type

(ln(t − t0))k · (t − t0)λ =

(ln(t − t0))k · (t − t0)a · (cos(b · ln(t − t0)+ i · sin(b · ln(t − t0))).

Comments.

• While it is good that we get expressions similar to what we have empirically ob-
served, be it in case of predicting economic crashes or the case of predicting the
number of discovered software faults, the dependence of these expressions on the
corresponding parameters t0, a, and b is highly nonlinear. So, it is computation-
ally difficult to identify the parameters of these models from observations.

• What if we have both shift- and scale-invariance? In this cases, the expression
should be both a linear combination of the terms tk ·exp(λ · t) and a combination
of the terms of the type (ln(t−t0))k ·(t−t0)λ . The need for the second interpreta-
tion excludes exponential terms, so such functions should be linear combinations
of terms xk, i.e., polynomials, with C j as the only parameters. This is the only
case when the dependence on the parameters is linear and so, identification of
these parameters is computationally easy.

What we plan to do now. Now that we have described the symmetry-motivated
models, let us described how to make identification of the parameters of these mod-
els easy.

3 Analysis of the Problem and Resulting Computationally
Efficient Parameter Identification

Main idea. What we would like to do is come up with a linear differential equa-
tion with linear coefficients that describes all linear combinations of symmetry-



8 V. Kreinovich, Anh H. Ly, O. Kosheleva, and S. Sriboonchitta

motivated models. To describe such an equation, let us denote the differentiation
operation by D, so that (D f )(t) def

= f ′(t).

Shift-invariant case: analysis of the problem. Let us start with describing shift-
invariant models in these terms. In these models, every function e j(t) is a linear
combination of functions of the type xk · exp(λ · t).

To find an appropriate differential equation for these functions, let us start with
the case k = 1, when this function takes the form exp(λ · t). For the function

exp(λ · t),

we have Dexp(λ · t) = λ · exp(λ · t), thus (D−λ )exp(λ · t) = 0.
For the next (k = 1) function e(t) = t · exp(λ t), we have

(De)(t) = exp(λ · t)+λ · exp(λ · t),

thus ((D−λ )e)(t) = exp(λ · t). We already know that

(D−λ )exp(λ · t) = 0,

thus we have ((D−λ )2e)(t) = 0.
Similarly, for the function e(t) = tk · exp(λ · t), we have

(De)(t) = k · tk−1 · exp(λ · t)+λ · tk · exp(λ · t),

thus
((D−λ )e)(t) = k · tk−1 · exp(λ · t).

So, by induction, we can prove that for this function e(t), we have (D−λ )ke = 0.
Different expressions forming e j(t) correspond to different eigenvalues λℓ, so

each of them annihilated by a corresponding differential operation D−λℓ, or, if this
eigenvalue if multiple with multiplicity qℓ, by an operator (D−λℓ)

qℓ . Thus, if we
apply all these operators one after another, all the terms in e j(t) will be annihilated
and thus, we will have a differential operator

D̃ def
= (D−λ1)

q1(D−λ2)
q2 . . .(D−λm)

qm

for which D̃e j = 0 for all j. Since each model x(t) is a linear combination of the
functions e j(t), the function x(t) also satisfies the equation D̃x = 0.

If we open the parentheses, we conclude that D̃ is a polynomial of m-th order in
terms of D, i.e., that it has the form

D̃ = Dm +a1 ·Dm−1 +a2 ·Dm−2 + . . .+am.

Thus, the equation (D̃x)(t) = 0 takes the form

dmx
dtm +a1 ·

dm−1x
dtm−1 +a2 ·

dm−2x
dtm−2 + . . .+am · x = 0. (8)
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This is the desired differential equation with constant coefficients.

Examples. For a polynomial of order ≤ m−1, all eigenvalues are zeros, so D̃ = Dm,
and the corresponding differential equation has the form

dmx
dtm = 0.

One can see that solutions to this differential equation are indeed exactly polynomi-
als of order ≤ m−1.

For a simple sinusoidal signal x(t) = A · cos(ω · t +φ), we get a second order
differential equation with constant coefficients

d2x
dt2 +a1 ·

dx
dt

+a2 · x = 0.

To be more precise, the sinusoid correspond to the case when a1 = 0 and a2 > 0;
other cases correspond to exponential functions or functions of the type

A · exp(−a · t) · cos(ω · t +φ).

How can we easily identify a model: towards an algorithm. Instead of the orig-
inal parameters of the model – parameters on which depends highly non-linearly –
we can instead identify the parameters a1, . . . ,am of the corresponding differential
equation (8).

Of course, we have to approximate each derivative by a finite difference, so that
if we start with a sequence of values x1, . . . ,xi, . . . corresponding to moments of time

t1, t2 = t1 +∆ t, t3 = t1 +2∆ t, . . . , ti = t1 +(i−1) ·∆ t,

then we form finite difference (∆x)i
def
=

xi − xi−1

∆ t
. Then, instead of the second deriva-

tives, we will use the values

(∆ 2x)i
def
= (∆(∆x))i =

(∆x)i − (∆x)i−1

∆ t
=

xi −2xi−1 + xi−2

(∆ t)2 .

Similarly, in the general case, we have

(∆ kx)i = (∆(∆ k−1x))i =
xi − k · xt−1 +Ck

2 · ti−1 −Ck
3 · ti−2 + . . .+(−1)k · ti−k

(∆ t)k .

So, instead of equation (8), we have an approximate equation

(∆ mx)i +a1 · (∆ m−1x)i +a2 · (∆ m−2x)i + . . .+ xi = 0. (9)



10 V. Kreinovich, Anh H. Ly, O. Kosheleva, and S. Sriboonchitta

The values (∆ kx)i are computed based on the observations xi, so we get an (over-
determined) system of linear equations from which we can easily find the unknowns
a1, . . . ,am by using the Least Squares method.

Shift-invariant case: resulting algorithm. Based on the sequence of observations

xi = x(ti), we compute the sequence of values (∆x)i =
xi − xi−1

∆ t
, then the sequence

(∆ 2x)i = (∆(∆x))i, etc., until we have computed (∆ mx)i. Based on thus computed
sequences, we find the parameters a j by applying the Least Squares Method to the
equations (9).

Important comments.

• No problem if observations are not equally spaced in time: just take (∆x)i =
xi − xi−1

∆ ti
, where we denoted ∆ ti

def
= ti − ti−1.

• It should be mentioned that even when the measurements of xi = x(ti) at different
moments of time are uncorrelated, their linear combinations (as in the left-hand
side of formula (9)) are correlated, since the expressions for i and for i− 1 now
depend on the same value xi. Thus, we need to use the Least Squares in the pres-
ence of this easy-to-compute correlation. This does not affect the computational
easiness – the expression is still quadratic and equating its derivatives to 0 still
leads to a system of linear equations.

• If needed, we can convert the new parameters a1, . . . ,am into the more traditional
ones. All we need for this is to compute the derivatives of the original expres-
sions f (t,c1, . . . ,cℓ) and find the values a j for which the linear combinations of
these derivatives are 0s. Then, we get expressions describing a j in terms of c j:
a j = f j(c1, . . . ,cℓ). Once we know a j, we can solve the corresponding system of
equations f j(c1, . . . ,cℓ) = a j. This system is non-linear, but when the number of
parameters is small, it is not that difficult to solve.

Scale-invariant case: analysis of the problem. As we have shown earlier, the scale-
invariant case reduces to the shift-invariant case if we introduce an auxiliary variable
τ = ln(t − t0). Thus, similarly to the above-described shift-invariant case, with re-
spect to this new variable τ , we get a differential equation

dmx
dτm +a1 ·

dm−1x
dτm−1 + . . .+am · x = 0. (10)

Differentiating the relation between τ and t, we conclude that dτ =
dt

t − t0
. Thus,

d
dτ

= (t − t0) ·
d
dt

, and the equation (1) takes the following form:

(t − t0)m · dmx
dtm +a1 · (t − t0)m−1 · dm−1x

dtm−1 + . . .+am · x = 0. (11)

There are two possibilities:
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• it may be that we know t0, or
• it may be that we need to determine t0 from observations.

In the first subcase, all we need is to find the values a j.
In the second subcase, to make the problem linear, we expand all the polynomials

(t − t0) j = x j +(− j · t0) · t j−1 + . . . ,

then each term a j ·(t−t0)m− j · dm− jx
dtm− j becomes a linear combination of the following

terms:

tm− j · dm− jx
dtm− j , tm− j−1 · dm− jx

dtm− j , . . . ,
dm− jx
dtm− j .

Let us denote the coefficients at tm− j−k · dxm− j

dtm− j by a jk. Then, the formula (11) takes
the following form:

tm · dxm

dtm +a01 · tm−1 · dxm

dtm + . . .+a0m · dxm

dtm +

a10 · tm−1 · dxm−1

dtm−1 +a11 · tm−2 · dxm−1

dtm−1 + . . .+a1,m−1 ·
dxm−1

dtm−1 +

. . .+ (12)

am0 · x = 0.

Thus, depending on whether we know t0 or we don’t, we arrive at the following
linear algorithms.

Scale-invariant case: resulting algorithms. Based on the original sequence of ob-
servations xi = x(ti), we compute the finite differences (∆ kx)i for all possible values
k ≤ m.

Then, if we know the value t0, we compute the parameters a1, . . . ,am of the cor-
responding model by applying the Least Squares method to the following system of
linear equations:

(ti − t0)m · (∆ mx)i +a1 · (ti − t0)m−1 · (∆ m−1x)i + . . .+am · xi = 0. (13)

When we do not know the value t0, then we need to find the parameters a jk of the
model by applying the Least Squares method to the following system of equations:

tm
i · (∆ mx)i +a01 · tm−1

i · (∆ mx)i + . . .+a0m · (∆ mx)i+

a10 · tm−1
i · (∆ m−1x)i +a11 · tm−2 · (∆ m−1x)i + . . .+a1,m−1 · (∆ m−1x)i+

. . .+ (14)

am0 · x = 0.
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