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Abstract—In principle, we can have many different mem-
bership functions. Interestingly, however, in many practical
applications, triangular and trapezoidal membership functions
are the most efficient ones. In this paper, we use fuzzy approach
to explain this empirical phenomenon.

I. INTRODUCTION

Triangular and trapezoid membership functions are ubiq-
uitous: why? One of the main ideas behind fuzzy logic is to
represent an imprecise (“fuzzy”) natural-language property P
like “small” by its membership function, i.e., a function µ(x)
that assigns, to each possible value x of the corresponding
property, the degree µ(x) ∈ [0, 1] this value satisfies the
property P (e.g., to what extent x is small); see, e.g., [1],
[2], [3], [5], [6], [9].

According to this definition, we can have many different
membership functions. However, in many applications of
fuzzy techniques, the simplest piece-wise linear membership
functions – e.g., triangular and trapezoid ones – works very
well.

Why?

What we do in this paper. In this paper, we use fuzzy
techniques to analyze this question. As a result of this analysis,
we show that indeed triangular and trapezoid membership
functions are the most reasonable ones. Thus, our analysis
explains the ubiquity of triangular and trapezoid membership
functions.

II. ANALYSIS OF THE PROBLEM

How can we analyze the problem: need for a type-2
approach. Traditionally – e.g., in control applications – fuzzy
logic is used to select a value of the corresponding quantity,
e.g., the value of control u. To come up with such a value:

• first, we use the experts’ rules to come up, for each
possible control value u, with a degree d(u) to which
this control value is reasonable;

• then, we select one of the control values u – e.g., the one
for which the degree of reasonableness is the largest:

d(u) → max
u

.

In our problem, instead of selecting a single value u, we select
the whole membership function µ(x). To use fuzzy techniques
for selecting µ, we thus need to do the following:

• first, we need to use experts’ rules to assign, to each
possible membership function µ(x), a degree d(µ) to
which this membership function is reasonable, and

• then, out of all possible members functions, we select
the one which is the most reasonable, i.e., for which the
degree of reasonableness d(µ) is the largest:

d(µ) → max
µ

.

Let us follow this path.

Comment. Traditionally:
• situations in which we use fuzzy to reason about real

values is known as type-1 fuzzy; while
• situations in which we use fuzzy to reason about fuzzy

is known as type-2 fuzzy approach; see, e.g., [3], [4].
From this viewpoint, what we plan to use is an example of
the type-2 fuzzy approach.

Expert rules. First, we need to select expert rules. We consider
the problem in its utmost generality, we want rules that will
be applicable to all possible fuzzy properties. In this case,
the only appropriate rule that comes to mind is the following
natural natural-language rule:

• if x and x′ are close,
• then µ(x) and µ(x′) should be close.

This rule exemplifies the whole idea of fuzziness: instead of
abruptly changing the degree of confidence from 0 to 1 as
would happen if we consider crisp properties (like x ≥ 0), we
have a smooth transition from 0 to 1.

How can we formalize this expert rule? Since there are
infinitely many possible values of x and x′, the above rule
consists of infinitely many implications – one implication for
each pair (x, x′). Dealing with infinitely many rules is difficult.
It is therefore desirable to try to limit ourselves to finite number
of rules.

Such a limitation is indeed possible. Indeed, theoretically,
we can consider all infinitely many possible values x. How-
ever, in practice, the values of any physical quantity are



bounded: e.g., locations on the Earth are bounded by the
Earth’s diameter, speeds are limited by the speed of light, etc.
Thus, it is reasonable to assume that all possible values x are
within some interval [x, x].

Second, we only know x and x′ with a certain accuracy
ε > 0. From this viewpoint, there is no need to consider all
infinitely many values, it is sufficient to consider only values
on the grid of width ε, i.e., values

x0 = x, x1 = x+ ε, x2 = x+ 2ε, . . . , xn = x+ n · ε = x,

where we denoted n
def
=

x− x

ε
. In view of this, it is sufficient

to describe the values µi
def
= µ(xi) of the desired membership

function at the points x0, x1, . . . , xn. We will call these values
discrete (d-)membership function.

For these values, it is sufficient to formulate the above
“closeness” rule only for neighboring values µi and µi+1. To
be more precise, this rule now takes the following form:

For all i, µi is close to µi+1,

i.e., in other words,

(µ1 is close to µ2) and . . . and ((µn−1 is close to µn). (1)

Formula (1) can be formalized according to the usual fuzzy
methodology. Intuitively, closeness of two numbers x and
x′ is equivalent to the requirement that the absolute value
d = |x − x′| of their difference is small. Thus, to express
closeness, we need to select a membership function s(d)
describing “small”. The larger the difference, the less small it
is, so it is reasonable to require that the membership function
s(d) be strictly decreasing – at least until it reaches value 0
for the differences d which are clearly not small.

Since n is usually large, and thus, 1/n is small, without
losing generality, we can safely assume that the distance 1/n
is small, i.e., that s(1/n) > 0.

In terms of the selected membership function µ0(d), for
each i, the degree to which µi is close to µi+1 is equal to
s(|µi − µi+1|). To find the degree d(µ) to which a given d-
membership function µ = (µ1, . . . , µn) is reasonable (i.e.,
satisfies the above experts’ rule), we need to apply some
“and”-operation (t-norm) f&(a, b) to these degrees, and get

d(µ) = f&(s(|µ0 − µ1|), . . . , s(|µn−1 − µn|)).

It is reasonable to consider the simplest “and”-operation
f&(a, b) = min(a, b), then we get

d(µ) = min(s(|µ0 − µ1|), . . . , s(|µn−1 − µn|)). (2)

Now, we are ready to formulate the problem in precise terms.

III. DEFINITIONS AND THE MAIN RESULTS

Definition 1. Let n be a positive integer, and let s(d) be a
function from non-negative numbers to [0, 1] which is strictly
increasing until it reaches 0 and for which s(1/n) > 0.

• By a discrete (d-) membership function, we mean a tuple
µ = (µ0, . . . , µn).

• By a degree of reasonableness d(µ) of a d-membership
function µ, we mean the value

d(µ) = min(s(|µ0 − µ1|), . . . , s(|µn−1 − µn|)). (2)

• Let M be a class of d-membership functions. We say
that a d-membership function µopt ∈ M is the most
reasonable d-membership function from the class M if

d(µopt) = sup
µ∈M

d(µ).

• Let M be a class of membership functions defined on an
interval [x, x]. We say that a membership function µ(x) ∈
M is the most reasonable membership function from the
class M if for a sequence nk → ∞, the corresponding
d-membership functions are the most reasonable.

Proposition 1. Among all dmembership functions for which
µ0 = 0 and µn = 1, the most reasonable d-membership

function is µi =
i

n
.

Comments.
• Notice that our result does not depend on the selection

of the membership function s(d).
• For reader’s convenience, all the proofs are presented in

the special proofs section.

Corollary 1. Among all membership functions on the interval
[x, x] for which µ(x) = 0 and µ(x) = 1, the most reasonable

membership function is µ(x) =
x− x

x− x
.

Comment. Thus, the most reasonable membership function is
linear.

Proposition 2. Among all d-membership functions for which
µ0 = 1 and µn = 0, the most reasonable d-membership

function is µi =
n− i

n
.

Corollary 2. Among all membership functions on the interval
[x, x] for which µ(x) = 1 and µ(x) = 0, the most reasonable

membership function is µ(x) =
x− x

x− x
.

Comment. Thus, here also, the most reasonable membership
function is linear.

This explains ubiquity of trapezoid membership functions.
Let us consider a property P like “medium”, for which:

• the property P is absolutely true for all values x from
some interval [t, t], and

• the property P is absolutely false for all x outside a wider
interval [T , T ]

Such properties are common.
In terms of membership degrees, the above condition means

that:
• µ(x) = 0 for x ≤ T ,
• µ(x) = 1 for t ≤ x ≤ t, and
• µ(x) = 0 for x ≥ T .

On the intervals [T , t] and [t, T ], we do not know the values
of the membership function. On both these subintervals, it is



reasonable to select the most reasonable membership function.

Definition 2. We say that a d-membership function µ =
(µ0, . . . , µn) is normalized if µi = 1 for some i.

Proposition 3. Among all normalized d-membership functions
for which µ0 = µ2k = 0, the most reasonable d-membership
function is the following one:

• µi =
i

k
when i ≤ k, and

• µi =
2k − i

k
when i ≥ k.

Corollary 3. Among all normalized membership functions on
the interval [x, x] with midpoint x̃, for which µ(x) = µ(x) =
0, the most reasonable membership function is:

µ(x) =
x− x̃

x̃− x
for x ≤ x̃ and µ(x) =

x− x

x− x̃
for x ≥ x̃.

Comment. Thus, here also, the most reasonable membership
function is a triangular one.

Discussion. How robust are these results? To answer this
question, let us show that under two somewhat different
approaches, trapezoid and linear membership functions are still
the most reasonable ones.

IV. FIRST SET OF AUXILIARY RESULTS: WHAT IF WE USE
A DIFFERENT “AND”-OPERATION, E.G., PRODUCT?

Discussion. In the previous section, we used the min “and”-
operation. What if we use a different “and”-operation – e.g.,
the algebraic product f&(a, b) = a · b, an operation also
proposed by L. Zadeh in his original paper?

In this case, the result depends, in general, on the selection
of the membership function s(d) for “small”. All we know
about “small” is that 0 is definitely absolutely small, and that
there exists some value D which is definitely not small. This
is one of the cases discussed in the previous section, so let
us use the results of the previous section to select the most
reasonable membership function for small:

s0(d) = 1− d

D

for d ≤ D and s0(d) = 0 for d ≥ D. For this selection, we
get the following results.

Definition 3. Let n be a positive integer, and let D > 0 be

a positive real number. Let s0(d) = 1 − d

D
for d ≤ D and

s0(d) = 0 for d ≥ D.
• By a product-based degree of reasonableness d0(µ) of a

d-membership function µ, we mean the value

d0(µ) = s0(|µ0 − µ1|) · . . . · s0(|µn−1 − µn|).

• Let M be a class of d-membership functions. We say that
a membership function µopt ∈ M is the most product-
based reasonable membership function from the class
M if

d0(µopt) = sup
µ∈M

d0(µ).

• Let M be a class of membership functions defined on
an interval [x, x]. We say that a membership function
µ(x) ∈ M is the most product-based reasonable rea-
sonable membership function from the class M if for
a sequence nk → ∞, the corresponding d-membership
function are the most product-based reasonable.

Proposition 4. Among all d-membership functions for which
µ0 = 0 and µn = 1, the most product-based reasonable d-

membership function is µi =
i

n
.

Corollary 4. Among all membership functions on the interval
[x, x] for which µ(x) = 0 and µ(x) = 1, the most product-

based reasonable membership function is µ(x) =
x− x

x− x
.

Comment. Thus, the most reasonable membership function is
linear.

Proposition 5. Among all d-membership functions for which
µ0 = 1 and µn = 0, the most product-based reasonable d-

membership function is µi =
n− i

n
.

Corollary 5. Among all membership functions on the interval
[x, x] for which µ(x) = 1 and µ(x) = 0, the most product-

based reasonable membership function is µ(x) =
x− x

x− x
.

Comment. Thus, here also, the most reasonable membership
function is linear. Similarly to the previous section, this
explains the ubiquity of trapezoid membership functions.

Proposition 6. Among all normalized membership functions
for which µ0 = µ2k = 0, the most product-based reasonable
d-membership function is the following one:

• µi =
i

k
when i ≤ k, and

• µi =
2k − i

k
when i ≥ k.

Corollary 6. Among all normalized membership functions on
the interval [x, x] with midpoint x̃, for which µ(x) = µ(x) =
0, the most product-based reasonable membership function is:

µ(x) =
x− x̃

x̃− x
for x ≤ x̃ and µ(x) =

x− x

x− x̃
for x ≥ x̃.

Comment. Thus, here also, the most reasonable membership
function is a triangular one.

V. SECOND SET OF AUXILIARY RESULTS: WHAT IF WE
USE STATISTICS-MOTIVATED LEAST SQUARES APPROACH

TO SELECT THE MOST REASONABLE MEMBERSHIP
FUNCTION

Discussion. In the above sections, we used fuzzy techniques
to determine the degree to which a d-membership function is
reasonable, i.e., a degree to which µ1 − µ0 is small, µ2 − µ1

is small, etc. Intuitively, small means close to 0, i.e., being
approximately equal to 0. In other words, we determine a de-
gree to which the following system of approximate equalities
hold:

µ1 − µ0 ≈ 0, . . . , µn − µn−1 ≈ 0.



It is worth noticing that such systems of approximate equation
are well known in traditional statistical data analysis, where
the usual way of dealing with such system is to use the
Least Squares approach (see, e.g., [7], [8]), i.e., to look
for the solutions for which the sum of the squares of the
approximation errors is the smallest possible:

(µ1 − µ0)
2 + . . .+ (µn − µn−1)

2 → min .

Thus, we arrive at the following definitions.

Definition 4. Let n be a positive integer.
• By the least-squares degree of reasonableness d1(µ) of a

d-membership function µ, we mean the value

d1(µ) = (µ0 − µ1)
2 + . . .+ (µn−1 − µn)

2.

• Let M be a class of d-membership functions. We say
that a membership function µopt ∈ M is the most least-
squares reasonable membership function from the class
M if

d1(µopt) = sup
µ∈M

d1(µ).

• Let M be a class of membership functions defined on
an interval [x, x]. We say that a membership function
µ(x) ∈ M is the most least-squares reasonable rea-
sonable membership function from the class M if for
a sequence nk → ∞, the corresponding d-membership
functions are the most least-squares reasonable.

Proposition 7. Among all d-membership functions for which
µ0 = 0 and µn = 1, the most least-squares reasonable d-

membership function is µi =
i

n
.

Corollary 7. Among all membership functions on the interval
[x, x] for which µ(x) = 0 and µ(x) = 1, the most least-

squares reasonable membership function is µ(x) =
x− x

x− x
.

Comment. Thus, the most reasonable membership function is
linear.

Proposition 8. Among all d-membership functions for which
µ0 = 1 and µn = 0, the most least-squares reasonable d-

membership function is µi =
n− i

n
.

Corollary 8. Among all membership functions on the interval
[x, x] for which µ(x) = 1 and µ(x) = 0, the most least-

squares reasonable membership function is µ(x) =
x− x

x− x
.

Comment. Thus, here also, the most reasonable membership
function is linear. Similarly to the previous section, this
explains the ubiquity of trapezoid membership functions.

Proposition 9. Among all normalized membership functions
for which µ0 = µ2k = 0, the most least-squares reasonable
d-membership function is the following one:

• µi =
i

k
when i ≤ k, and

• µi =
2k − i

k
when i ≥ k.

Corollary 9. Among all normalized membership functions on
the interval [x, x] with midpoint x̃, for which µ(x) = µ(x) =
0, the most least-squares reasonable membership function is:

µ(x) =
x− x̃

x̃− x
for x ≤ x̃ and µ(x) =

x− x

x− x̃
for x ≥ x̃.

Comment. Thus, here also, the most reasonable membership
function is a triangular one.

VI. PROOFS

Proof of Proposition 1.

1◦. Let us first prove, by contradiction, that for every d-
membership function µ from the class M , we have

d(µ) ≤ s0

(
1

n

)
.

Indeed, if we had

d(µ) > s(
1

n
),

then, by definition of the degree d(µ), this would means that

s(|µi − µi+1|) > s

(
1

n

)
for all i. Since the function s(d) is strictly decreasing, this
implies that

|µi − µi+1| <
1

n

for all i. However, we always have

|a+ . . .+ b| ≤ |a|+ . . .+ |b|.

Here,

µ0 − µn = (µ0 − µ1) + . . .+ (µn−1 − µn),

hence

|µ0 − µn| ≤ |µ0 − µ1|+ . . .+ |µn−1 − µn|. (3)

However, the left-hand side is equal to |0− 1| = 1, while the
right hand side is the sum of n terms each of which is smaller

than
1

n
, hence the sum is smaller than 1. This contradiction

shows that the case

d(µ) > s

(
1

n

)
is indeed impossible.

2◦. One can easily check that for

xi =
i

n
,

we have
|µi − µi+1| =

1

n
,



hence
s(|xi − xi+1|) = s

(
1

n

)
for all i, and

d(µ) = s

(
1

n

)
.

3◦. Let us prove that, vice versa, if

d(µ) = s

(
1

n

)
,

then
xi =

i

n

for all i.
Indeed, if

d(µ) = s

(
1

n

)
,

then for each i, we have

s(|µi − µi+1|) ≥ s

(
1

n

)
,

hence, due to strict monotonicity of the function s(d), we have

|µi − µi+1| ≤
1

n
.

If one of the values |µi − µi+1| was smaller than

1

n
,

then the sum

|µ0 − µ1|+ . . .+ |µn−1 − µn|

would be smaller than 1, which contradicts to the inequal-
ity (3). Similarly, a difference µi+1 − µi cannot be negative,
since then the sum of all the values µi+1−µi, which is equal
to µn − µ0 = 1, would be smaller than 1.

Thus,
µi+1 − µn =

1

n

for all i, hence, for each i, we have:

µi = µ0 + (µ1 − µ0) + . . .+ (µi − µi−1) =

1

n
+ . . .+

1

n
(i times) =

i

n
.

The proposition is proven.

Proof of Corollary 1. If we take into account that µi = µ(xi)
and xi = x+ i · ε, we conclude that

i =
xi − x

ε
.

Substituting this expression for i into the formula

µ(xi) =
i

n
,

we conclude that
µ(xi) =

xi − x

n · ε
.

Here, by definition of n, we have n · ε = x− x, hence

µ(xi) =
xi − x

x− x
.

The corollary is proven.

Proofs of Proposition 2 and Corollary 2 are similar to the
proofs of Proposition 1 and Corollary 1.

Proof of Proposition 3. Let i0 denote the value for which
µi0 = 1. Then, we have d(µ) = min(d−(µ), d+(µ)), where
we denoted

d−(µ) = min(s(|µ0 − µ1|), . . . , s(|µi0−1 − µi0 |))

and

d+(µ) = min(s(|µi0 − µi0+1|), . . . , s(|µn−1 − µn|))

Similarly to the proof of Proposition 1, we can conclude that

d−(µ) ≤ s

(
1

i0

)
and

d+(µ) ≤ s

(
1

n− i0

)
.

If
i0 <

n

2
,

then
n− i0 >

n

2
,

hence

d(µ) ≤ d+(µ) ≤ s

(
1

n− i0

)
< s

(
2

n

)
.

Similarly, if
i0 >

n

2
,

then
d(µ) ≤ d−(µ) ≤ s

(
1

i0

)
< s

(
2

n

)
.

On the other hand, when

i0 =
n

2

and values µi are equidistant, we get

s(µ) = s

(
2

n

)
.

Thus, for the optimal d-membership function, we must have

i0 =
n

2
.

In this case, similarly to the proofs of Propositions 1 and 2,
we can conclude that the only way to get

d(µ) = s

(
2

n

)
is to have values µi uniformly changing on each of the
intervals [0, i0] and [i0, n], i.e., to have

µi =
i

k



for
i ≤ k =

n

2

and
µi =

n− i

k

for i ≥ k. The proposition is proven.

Proof of Corollary 3 is similar to the proofs of Corollaries 1
and 2: we plug in the expression for i in terms of xi into the
formula for µi = µ(xi).

Proof of Proposition 4. For

µi =
i

n
,

we have
|µi − µi+1| =

1

n
,

thus
s0(|µi − µi+1|) = 1− 1

n ·D
and

d1(µ) =

(
1− 1

n ·D

)n

.

Let us prove that for all other d-membership functions,
we have smaller values of d0(µ). Indeed, it is known that
the geometric mean is always smaller than or equal than the
arithmetic mean, and the only time when they are equal is
when all the values are the same. For the values

s0(|µi − µi+1|) = 1− 1

n ·D
,

the geometric mean is equal to (d0(µ))
1/n, while the arith-

metic mean a is equal to

a = 1− |µ0 − µ1|+ . . .+ |µn−1 − µn|
n ·D

.

As we have proven earlier, the sum

|µ0 − µ1|+ . . .+ |µn−1 − µn|

is always greater than or equal to 1, and it is equal to 1 only if
all the differences µi+1−µi are positive. Thus, the arithmetic
mean is always smaller than or equal to

1− 1

n ·D
.

So, the fact that the geometric mean is smaller than or equal
to the arithmetic mean implies that

(s0(µ))
1/n ≤ a ≤ 1− 1

n ·D
.

Thus,

s0(µ) ≤ an ≤
(
1− 1

n ·D

)n

.

So, we have the desired strict inequality except for the case
when all the differences µi+1−µi are equal and positive. This
is exactly the case of

µi =
i

n
.

The proposition is proven.

Proofs of Propositions 5 and 6 and Corollaries 4–6 are
similar.

Proof of Proposition 7. To find the values µi minimizing the
sum of the squares, we can differentiate this sum with respect
to µi and equate the derivative to 0. We then conclude that

(µi − µi−1) + (µi − µi+1) = 0,

i.e., that
µi − µi−1 = µi+1 − µi.

So, all the differences µi+1−µi are equal to each other. Since

their sum is equal to 1, each difference is equal to
1

n
, hence

µi =
i

n
. The proposition is proven.

Proofs of Propositions 8 and 9 and Corollaries 7–9 are
similar.
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