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Abstract—It is known that, in general, data processing under
interval and fuzzy uncertainty is NP-hard – which means that,
unless P = NP, no feasible algorithm is possible for computing
the accuracy of the result of data processing. It is also known
that the corresponding problem becomes feasible if the inputs do
not interact with each other, i.e., if the data processing algorithm
computes the sum of n functions, each depending on only one
of the n inputs. In general, inputs xi and xj interact. If we
take into account all possible interactions, and we use bilinear
functions xi · xj to describe this interaction, we get an NP-hard
problem. This raises two natural questions: what if only a few
inputs interact? What if the interaction is described by some
other functions? In this paper, we show that the problem remains
NP-hard if we use different formulas to describe the inputs’
interaction, and it becomes feasible if we only have O(log(n))
interacting inputs – but remains NP-hard of the number of inputs
is O(nε) for any ε > 0.

I. INTRODUCTION

Need for data processing. In many practical situations, we
are interested in the value of a quantity y which is difficult or
even impossible to measure directly. For example, we may be
interested:

• in a distance to a faraway star, or
• in tomorrow’s temperature.

Since we cannot measure y directly, we measure it indirectly:
namely, we find some easier-to-estimate quantities x1, . . . , xn

which are related to y by a known dependence

y = f(x1, . . . , xn),

and then we use the results x̃i of measuring or estimating the
quantities xi to estimate y as

ỹ = f(x̃1, . . . , x̃n).

Need to take uncertainty into account. Measurements are
never absolutely accurate. As a result, the measurement results
x̃i are, in general, different from the actual (unknown) values
xi of the corresponding quantities. Thus, even if we the
relation y = f(x1, . . . , xn) is precise, the result ỹ of applying
the algorithm f to the measurement results is, in general,
different from the actual value y. It is desirable to find out
how accurate is the estimate ỹ, i.e., what can we conclude
about the measurement errors

∆y
def
= ỹ − y.

This is definitely important. For example, if we predict
tomorrow’s temperature to be ỹ = −2◦ C, and the accuracy
of this prediction is ±1◦, then we know that tomorrow will be
freezing, with the possibility of ice on the road, so we need to
send a warning to the public, put sand (or salt) on the roads,
and prepare the corresponding equipment. On the other hand,
if the accuracy is ±10 degrees, we may still alert the public,
but it is better to wait until we get closer – and thus, get more
accurate information – before we start placing sand (or salt)
on the roads.

This is even more important for a spaceship sent to Mars:
we want to make sure that, with all the uncertainty taken into



account, the spaceship will land in the desired Martian region.

Case of interval uncertainty. In many practical situations,
the only information that we have about the measurement
errors ∆xi

def
= x̃i − xi is the upper bound ∆i on its absolute

value: |∆xi| ≤ ∆i; see e.g., [16]. In this case, once we know
the measurement result x̃i, the only information that we have
about the actual (unknown) values xi is that xi belongs to the
interval

[xi, xi]
def
= [x̃i −∆i, x̃i +∆i].

Different values xi from the corresponding intervals lead,
in general, to different values y = f(x1, . . . , xn). In this case,
we would like to find the range of all possible values of y:

[y, y] = f([x1, x1], . . . , [xn, xn])
def
=

{f(x, . . . , xn) : x1 ∈ [x1, x1], . . . , xn ∈ [xn, xn]}.

The problem of computing this range is known as the problem
of interval computations; see, e.g., [4], [11], [13].

Already for interval uncertainty, the corresponding prob-
lem is often computationally intractable (NP-hard). When
the function f(x1, . . . , xn) is linear

f(x1, . . . , xn) = a0 +

n∑
i=1

ai · xi,

then we have explicit formulas for the corresponding range:

y = ỹ −∆ and y = ỹ +∆,

where

∆ =

n∑
i=1

|ai| ·∆i.

However, already for quadratic functions f(x1, . . . , xn), the
problem of computing the range [y, y] is, in general, NP-hard –
which means, if P̸=NP (as most computer scientists believe)
that no feasible algorithms is possible that would solve all
particular cases of this problem; see, e.g., [10].

Case of fuzzy uncertainty. In many practical situations, in
addition to the upper bounds ∆i on the measurement error,
experts also tell us which values from the corresponding
interval [−∆i,∆i] are more probable and which are less
probable. This information is usually not given in terms of
probabilities, but rather in terms of imprecise (“fuzzy”) words
form natural langauge, such as “somewhat probable”, “very
probable”, etc. Such imprecise knowledge is ubiquitous.

To describe such knowledge in precise computer-
understandable terms, Zadeh invented the technique of fuzzy
logic; see, e.g., [2], [5], [12], [14], [15], [17]. In this technique,
to describe each imprecise property like “somewhat probable”,
we ask the expert to mark, on a scale from 0 to 10, to what
extent the corresponding value is possible. If an expert marks
7, we take 7/10 as the degree to which the corresponding value
is possible.

As a result, in addition to the interval [−∆i,∆i], we also
have, for each value ∆xi from this interval, a degree µi(∆xi)
to which this value is possible. The function that assigns, to
each value ∆xi, the corresponding degree, is known as the
membership function.

Data processing under fuzzy uncertainty. A value y is
possible if y = f(x1, . . . , xn) for some tuples for which:

• x1 is a possible value of the first input and
• x2 is a possible value of the second inputs, etc.

We know the degrees µi(xi) to which each xi is a possible
value of the i-th input. To estimate the degree to which x1

is possible and x2 is possible, etc., it is reasonable to use a
corresponding “and”-operation &(a, b) (t-norm) of fuzzy logic,
resulting in

f&(µ1(x1), . . . , µn(xn)).

The simplest such operation is

f&(a, b) = min(a, b),

in which case the corresponding inputs has the form

min(µ1(x1), . . . , µn(xn)).

To find the degree µ(y) corresponding to the possibility of
having either one tuple or another, we can similarly apply an
“or”-operation (t-conorm) f∨(a, b), the simplest of which is

f∨(a, b) = max(a, b).

Then, we get
µ(y) =

max{min(µ1(x1), . . . , µn(xn)) : f(x, . . . , xn) = y}.

This formula wa originally proposed by Zadeh and is thus
known as Zadeh’s extension principle.

Data processing under fuzzy uncertainty: computational
aspects. From the computational viewpoint, this formula can
be described in terms of α-cuts

xi(α)
def
= {xi : µi(xi) ≥ α} :

for every α, we have

y(α) = f(x1(α), . . . ,xn(α)).

Thus, from the computational viewpoint, propagation of fuzzy
uncertainty can be reduced to several interval computation
problems corresponding, e.g., to α = 0, 01, . . . , 0.9, 1.0.

Because of this reduction, in the following text, we will
consider only the case of interval uncertainty.

How to describe the dependence? In some cases, we know
the dependence f(x1, . . . , xn) from physics. In many other
cases, however, we need to determine this dependence exper-
imentally. For this, we need to first select a reasonable finite-
parametric family of functions, and then find the parameters
from the experiments.

When we analyze the dependence of the desired quantity
y on the auxiliary quantities x1, . . . , xn, the first thing we



usually do is analyze how y changes if we change only of
these inputs. For each inputs xi, we thus get a dependence

y = fi(xi).

This dependence may be linear, maybe quadratic, etc.
In some cases, inputs are independent – in the sense that the

changes in y caused by each inputs xi do not depend on the
values of all the other inputs xj with j ̸= i. In this case, the

resulting dependence has the form f(x1, . . . , xn) =
n∑

i=1

fi(xi).

One can easily check that in this case, the desired range [y, y]
is equal to the sum of the ranges corresponding to each of the
inputs:

y = y
1
+ . . .+ y

n

and
y = y1 + . . .+ yn,

where
[y

i
, yi]

def
= {fi(xi) : xi ∈ [xi, xi]}.

For simple functions fi(xi) like linear or quadratic, the range
is easy to compute; thus, the corresponding interval computa-
tions problem is feasible.

In practice, inputs often interact. A natural idea is to use
bilinear terms xi · xj to describe such an interaction. In
this case, we get a general quadratic formula, for which the
corresponding problems are NP-hard.

II. FORMULATION OF THE PROBLEMS

First question. NP-hardness comes from considering the case
when all inputs interact with each other. What if only a few
inputs interact?

This is the first question for which we provide an answer
in this paper.

Second question. In the NP-hardness result, we assume that
the interaction is described by bilinear terms. However, other
expressions are also possible. For example, in chemical kinet-
ics, for small concentrations of the corresponding chemicals,
the interactions are described by a bilinear formula xi ·xj , but
for very strong concentrations, the interaction is described by
a different formula min(xi, xj) (see, e.g., [7], [8], [9]), and for
intermediate concentration, we get a more complex formula;
see, e.g., [1], [6]. Will the general result remain NP-hard if
we consider such interaction?

This is the second question for which we provide the answer.

III. ANSWER TO THE FIRST QUESTION

Main result. Our first result is that if we have a quadratic form
in which only O(log(n)) pairs of interacting inputs, then we
have a feasible algorithm for estimating the range [y, y].

Comment. Detailed proofs of all our results – as well as
several related results – are presented in an accompanying
mathematical paper [3]. In the present paper, we describe the
main ideas behind these proofs.

Main idea of the proof. Since only v = O(log(n)) many
inputs

xi1 , . . . , xiv

are involved in the interaction, we can describe the desired
quadratic function as the sum

f(x1, . . . , xn) =
∑
i ̸=ik

fi(xi) + r(xi1 , . . . , xiv ),

where fi(xi) is a quadratic function of one variable, and

r(xi1 , . . . , xiv )

is a quadratic function of v variables.
Since each of the terms in the above sum depends on each

own inputs, we conclude that

y =
∑
i ̸=ik

y
i
+ r

and
y =

∑
i ̸=ik

yi + r,

where
y
i

def
= min{f(xi) : xi ∈ [xi, xi]},

yi
def
= max{f(xi) : xi ∈ [xi, xi]},

r =

min{r(xi1 , . . . , xiv ) : zi1 ∈ [xi1
, xi1 ], . . . , xiv ∈ [xiv

, xiv ]},

and
r =

max{r(xi1 , . . . , xiv ) : xi1 ∈ [xi1 , xi1 ], . . . , xiv ∈ [xiv , xiv ]}.

Minima and maxima y
i

and yi of a quadratic function fi(xi)
over an interval are easy to compute. Thus, to show that the
computation of the range [y, y] is feasible, we need to show
how to feasible compute the minimum and the maximum of
the function r(xi1 , . . . , xiv ) over the box

[xi1 , xi1 ]× . . .× [xiv , xiv ].

According to calculus, a maximum or a minimum of a
function F (z) on an interval [z, z] is attained:

• either at a point which is inside the interval (z, z), in
which case

dF

dz
= 0;

• or at the left endpoint z = z of the give interval,
• or at the right endpoint z = z of this interval.

Similarly, the maximum or minimum of a function
F (z1, . . . , zv) on a box

[z1, z1]× . . .× [zv, zv]

is attained when for each of the v variables zi, one of the
following three situations happens:



• either the corresponding value zi is inside the interval
(zi, zi), in which case

∂F

∂zi
= 0;

• or the optimizing value is at the left end of the corre-
sponding interval zi = zi,

• or the optimizing value is at the right end of the corre-
sponding interval zi = zi.

For each variable, we have 3 options. Thus:
• for two variables, we have 3 ·3 = 9 possible options, and
• for v variables, we have 3v possible options.
In each of these 3v options, for each variables zi, we have

either zi = zi, or zi = zi, or

∂F

∂zi
= 0.

The first two equations are clearly linear in zi. In our case,
when zk = xik and the function

F (z1, . . . , zv) = r(z1, . . . , zv)

is quadratic, each derivative of a quadratic expression is linear,
thus, the equation

∂F

∂zi
= 0

is also linear in
z1, . . . , zv.

So, in each of the 3v cases, we have a system of linear
equations to find the corresponding values z1, . . . , zv – a
system which can be feasible solved. Out of all cases for which
each component zi of the solution is within the corresponding
interval, we choose:

• the smallest as r and
• the largest as r.

When v = O(log(n)), i.e., v ≤ C · log(n) for some constant
C, we have

3v ≤ 3C·log(n) = nlog(3)·C

linear systems. Thus, the number of linear system is polyno-
mial in n. Hence, the overall time for solving all these systems
is also bounded by a polynomial in n – and is, thus, feasible.
This proves our main result.

Analysis of the problem. What if we have more interacting
inputs? It is known that log(n) can be viewed as a limit of
power functions nε when ε → 0. So, a natural next question
is: what if we have nε interacting inputs, for some small ε?

Auxiliary result. If we allow nε interacting inputs, then, in
general, the problem of computing the range [y, y] remains
NP-hard.

Idea of the proof. Indeed, formally, NP-hard means that any
problem from a class NP can be reduced to this problem; see,
e.g., [10]. Thus, if we can reduce a known NP-hard problem
to a new problem, this means, by transitivity of reduction,
that every problem from the class NP can be reduced to the

new problem as well, and thus, that the new problem is also
NP-hard.

We know that the problem of estimating the range of a
general quadratic function over a given box is NP-hard. Let
us reduce this known NP-hard problem to our new problem
– of estimating the range of a quadratic function in which at
most nε inputs interact.

For this, let us start with any original quadratic form
Q(x1, . . . , xm). Then, we add M = n1/ε new variables
v1, . . . , vM , and consider a new quadratic function

f(x1, . . . , xm, v1, . . . , vM ) = Q(x1, . . . , xm) +
M∑
j=1

vj .

For this function, only inputs x1, . . . , xm interact, so out of
n = m+M variables, only O(nε) interact with each other.

On the other hand, since the new function f is the sum of
expressions each of which depends only on its own variables,
we conclude that its range [y, y] has the form

y = q +
M∑
j=1

vj

and

y = q +
M∑
j=1

vj ,

where q and q are the minimum and maximum of the original
quadratic expression Q(x1, . . . , xm) on the corresponding box.

So, if we know the bounds for f , we can easily find the
bounds for Q, and vice versa. Thus, computing the range of
f is indeed feasibly equivalent to computing the range of Q
– so we have the desired reduction, and thus, the problem is
indeed NP-hard.

IV. ANSWER TO THE SECOND QUESTION

Analysis of the problem. Instead of the usual interaction
terms xi · xj , we allow more general terms fij(xi, xj). If one
of the inputs is absent, i.e., if xi = 0, then there is usually no
interaction, so we can safely assume that

fij(0, xj) = fij(xi, 0) = 0

for all xi and xj .
To make the comparison with the product term (for which

fij(1, 1) = 1) easier, we can divide and multiply the expres-
sion fij(xi, xj) by

aij
def
= fij(1, 1),

then the corresponding terms takes the form

fij(xi, xj) = aij · Tij(xi, xj),

where
Tij(xi, xj)

def
=

fij(xi, xj)

aij
.

It is reasonable to require that small changes in xi and xj

should lead to small changes in Tij , i.e., that

|Tij(xi, xj)− Tij(x
′
i, x

′
j)| ≤ L · (|xi − x′

i|+ |xj − x′
j |),



for some Lipschitz constant L.
In this case, we consider expressions of the type

f(x, . . . , xn) =
n∑

i=1

fi(xi) +
∑
i ̸=j

aij · Tij(xi, xj),

where fi(xi) are quadratic functions of one variable.

Main result. The problem of computing the range [y, y] of a
function of the above type over a given box is NP-hard.

Idea of the proof. It is known that the problem of computing
the range of a quadratic function over a given box is NP-hard
already for the case when the corresponding quadratic form
is positive definite (i.e., when the corresponding function is
convex) and the range of each variable is

[xi, xi] = [0, 1];

see, e.g., [10]. (Reduction to [0, 1] can be easily achieved by
a linear transformation of each variable.)

To be more precise, for convex functions, computing the
minimum y is feasible, but computing the maximum y is NP-
hard.

Let us reduce the NP-hard problem of computing this
maximum to the new problem. Let us start with a general
convex quadratic expression

f(x1, . . . , xn) = a0 +
n∑

i=1

ai · xi +
∑
i,j

aij · xi · xj .

By separating quadratic terms corresponding to i = j and
i ̸= j, we get

f(x1, . . . , xn) = a0 +
n∑

i=1

ai · xi +
n∑

i=1

aii · x2
i+

∑
i ̸=j

aij · xi · xj .

Let us consider a new function

F (x1, . . . , xn) = a0 +
n∑

i=1

ai · xi +
n∑

i=1

aii · x2
i+

∑
i ̸=j

aij · Tij(xi, xj) + β ·
n∑

i=1

(2xi − 1)2,

for some β > 0.
Due to the Lipschitz condition, for sufficiently large β, the

function F (x1, . . . , xn) is convex. For a convex function, the
maximum Y on a convex set [0, 1]n is attained at one of the
vertices, i.e., when each of the values xi is equal to 0 or 1:

Y = max
xi∈{0,1}

F (x1, . . . , xn).

On each vertex, however, Tij(xi, xj) = xi·xj and (2xi−1)2 =
1. So, for vertices (x1, . . . , xn), we have

F (x1, . . . , xn) = f(x1, . . . , xn) + β · n.

The maximum y of the original convex quadratic function
f(x1, . . . , xn) is also attained at one of the vertices:

y = max
xi∈{0,1}

f(x1, . . . , xn).

Thus,
Y = max

xi∈{0,1}
F (x1, . . . , xn) =

max
xi∈{0,1}

(f(x1, . . . , xn) + β · n) =

max
xi∈{0,1}

f(x1, . . . , xn) + β · n =

y = β · n.

So, we get
Y = y + β · n.

Thus, the computation of y is indeed feasible reduced to
computing Y . This reduction shows that our problem is also
NP-hard.
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