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Abstract. The traditional utility-based decision making theory assumes
that for every two alternatives, the user is either absolutely sure that the
first alternative is better, or that the second alternative is better, or that
the two alternatives are absolutely equivalent. In practice, when faced
with alternatives of similar value, people are often not fully sure which
of these alternatives is better. To describe different possible degrees of
confidence, it is reasonable to use fuzzy logic techniques. In this paper, we
show that, somewhat surprisingly, a reasonable fuzzy modification of the
traditional utility elicitation procedure naturally leads to intuitionistic
fuzzy degrees.

1 Formulation of the Problem

Need to help people make decisions. In many practical situations, we need
to make a decision, i.e., we need to select an alternative which is, for us, better
than all other possible alternatives.

If the set of alternatives is small, we can easily make such a decision: indeed,
we can easily compare each alternative with every other one, and, based on
these comparisons, decide which one is better. However, when the number of
alternatives becomes large, we have trouble making decisions. Even in simple
situations, when we are looking for cereal in a supermarket, there are usually so
many selections that we just ignore most of them and go with a familiar one –
instead of the optimal one.

The situation is even more complicated if we are trying to make a decision
not on behalf of ourselves, but rather on behalf of a company or a community.
In this case, even comparing two alternatives is not easy: it requires taking into
account interests of different people involved, so the decision making process
becomes even more complicated.



Traditional approach to decision making: the notion of utility. The
traditional approach to decision making was originally motivated by the idea of
money.

We all know what money is, but when money was invented, it was a revo-
lutionary idea that made economic exchange much easier. Indeed, before money
was invented, people exchanged goods by barter: chicken for a shirt, jewelry for
boots, etc. Thus, to make a proper decision, every person needed to be able
to compare every two items with each other: how many chickens is this person
willing to exchange for a shirt, how many boots for a golden earing, etc. For n

goods, we have
n · (n− 1)

2
≈ n2

2
possible pairs. So, each person had to have in

mind a table of n2/2 numbers.
With money as a universally accepted means of exchange, all the person

needs to do is to decide, for each of n items, how much he or she is willing to pay
for 1 unit. So, to successfully make decisions, it is sufficient to know n numbers –
the values of each of n items. Then, even when we want to barter, we can easily
decide how many chickens are worth a shirt: it is sufficient to divide the price of
a shirt by the price of a chicken.

A similar idea can be used to compare different alternatives. All we need is
to have a numerical scale, i.e., a 1-parametric family of “standard” alternatives
whose quality increases with the increase in the value of the parameter. This can
be the money amount. Alternatively, this can be the probability p of a lottery in
which we something very good: the larger the probability, the more preferable
the lottery.

Then, instead of comparing every alternative with every other alternative,
we simply compare every alternative with alternatives on the selected scale, and
thus, for each alternative, we find the numerical value of the standard alternative
which is equivalent to a given one. This numerical value is known as the utility
u(a) of a given alternative a; see, e.g., [3, 4, 6, 8, 11].

In terms of utility, an alternative a is better than the alternative a′ if and
only the utility u(a) of the alternative a is larger than the utility u(a′) of the
alternative a′. Thus, once we have found the utility u(a) of each alternative, then
it is easy to predict which alternative the person will select: he/she will select
the alternative for which the utility u(a) is the largest possible.

How to actually find the utility. From the algorithmic viewpoint, the fastest
way to find the utility of a given alternative a based on binary comparisons is
to use bisection. Usually, we have an a prior lower bound and an a priori upper
bound for the desired utility u(a): u ≤ u(a) ≤ u. In other words, we know that
the desired utility u(a) is somewhere in the interval [u, u]. In this procedure, we
will narrow down this interval.

Once an interval is given, we can compute its midpoint ũ =
u+ u

2
and

compare a with the corresponding standard alternative s(ũ).
If a is exactly equivalent to the resulting standard alternative, this means

that we have found the exact value of the utility u(a): it is equal to ũ. However,
such exact equivalences are rare; in most cases, we will find out that:



– either a is better than s(ũ); we will denote it by s(ũ) < a; or
– the standard alternative is better: a < s(ũ).

In the first case, the preference s(ũ) < a means that ũ < u(a). Thus, we know
that u(a) ∈ [ũ, u]. In other words, we have a new interval containing the desired
utility. We can obtain this new interval if we replace the previous lower bound
u with the new lower bound ũ.

In the second case, the preference a < s(ũ) means that u(a) < ũ. Thus, we
know that u(a) ∈ [u, ũ]. In other words, we have a new interval containing the
desired utility. We can obtain this new interval if we replace the previous upper
bound u with the new upper bound ũ.

In both cases, the width of the interval is decreased by a factor of 2. Then,
we can repeat this procedure, and in k steps, we get u(a) with accuracy 2−k.
For example, in 7 steps, we get an accuracy of 1%.

Need to take fuzziness into account. The above procedure works well if
a person is absolutely sure about his/her preferences. In practice, we are often
not 100% sure about our preferences, especially when we compare alternatives
of nearby value.

It is reasonable to describe this uncertainty in fuzzy terms. For example, if
we use money as a standard scale, then for each alternative a, instead of having a
single amounts of money equivalent to this item, we may have different amounts
with different degree of certainty. In other words, instead of the above crisp
model, in which a person has an exact utility value u(a) for each alternative a,
we know have a fuzzy model in which for each person and for each alternative
a, we have a membership function µa(u) that describes, for each possible value
u, to what extend this value u is equivalent to the alternative a; see, e.g., [2, 5,
7, 9, 10, 12].

How to elicit fuzzy utility: a reasonable idea. We know how to elicit crisp
utility u(a) of a given alternative a: we need to compare the alternative a with
different values u0 of the scale. In the case of fuzzy utility, it is reasonable to
apply the same procedure. The only difference is that now, since the utility value
u(a) is fuzzy, this comparison will not lead to a crisp “yes”-“no” answer; instead,
we will get a fuzzy answer – the degree to which it is possible that a is better than
u0 (and, if needed, the degree to which it is possible that a is worse than u0).

Remaining open problems and what we do in this paper. In the crisp
case, we can determine the utility value u(a) from the results of the user’s com-
parisons.

To deal with the more realistic fuzzy case, we need to be able to extract
the fuzzy utility from the fuzzy answers to different comparisons. This is the
question that we deal with in this paper.

Interestingly, it turns out that in this context, intuitionistic fuzzy degrees
(see, e.g., [1]) naturally appear – in other words, instead of a single degree of
confidence in each corresponding statement, we now get two degrees:

– the degree to which this statement is true, and



– the degree to which this statement is false,

and, in contrast to the traditional fuzzy logic, these degrees do not add up to 1.

2 Analysis of the Problem

What happens if we compare the alternative a with a fixed value u0

on the utility scale? As we have mentioned earlier, while in the crisp case,
each alternative a is equivalent to a single number u(a) on the utility scale, in
general, the utility of an alternative is characterized not by a single number, but
rather with a membership function µa(u). This function describes, for each value
u from the utility scale, to what extent the alternative a is equivalent to u.

What will happen is we compare the alternative a to a value u0 on the utility
scale? In the crisp case, since the changes that a is exactly equivalent to a0 are
slim, we have either a < u0 or u0 < a. So, we can ask whether a is better than
u0, or we can ask whether u0 is better than a – whatever question we ask, we
get the exact same information.

Let us first consider the question of whether a is better than u0, i.e., whether
u0 < a. How can we extend this to the fuzzy case? To perform this extension,
it is convenient to take into account that while from the purely mathematical
viewpoint, < is a relation – and in mathematics, relations usually treated differ-
ently than functions – from the computational viewpoint, < is simply a function.
Just like + is a function that takes two numbers and returns a number which
is their sum, the relation < is a function that takes two numbers and returns a
boolean value: true or false.

Since < can be naturally treated as function, the question of how to extend
this to fuzzy becomes a particular case of a more general question of how to
extend functions to fuzzy – and this extension is well known, it is described by
Zadeh’s extension principle. Let us recall how this principle is usually derived.

Zadeh’s extension principle and how it is usually derived. Suppose that
we have a function y = f(x1, . . . , xn) of n real-valued variables, and we have fuzzy
information about the values x1, . . . , xn, i.e.,, we know membership functions
µ1(x1), . . . , µn(xn) that describes our knowledge about the inputs x1, . . . , xn.
Based on this information, what do we know about y = f(x1, . . . , xn)?

Intuitively, Y is a possible value of the variable y if there exists values
X1, . . . , Xn for which X1 is a possible value of x1 and . . . and Xn is a possi-
ble value of xn and Y = f(X1, . . . , Xn). We know the degrees

µi(Xi) to which each each real number Xi is a possible values of the input
xi. To combine these degrees into our degree of confidence in a composite and-
statement, we can use an “and”-operation (t-norm), the simplest of which is
min(a, b). Thus, for each tuple (X1, . . . , xn) for which Y = f(X1, . . . , Xn), our
degrees of confidence is the above and-statement is min(µ1(X1), . . . , µn(Xn)).

The existential quantifier “there exists” is, in effect, an “or”: it means that
either this property is true for one tuple, or for another tuple, etc. Thus, to find
the degree to which the value Y is possible, we need to apply an “or”-operation



(t-conorm) to the degrees of confidence of the corresponding and-statements. The
simplest “or”-operation is max(a, b). Thus, we arrive at the following formula
for the degree µ(Y ) to which Y is a possible value of the variable y:

µ(Y ) = max{min(µ1(X1), . . . , µn(Xn)) : f(X1, . . . , Xn) = Y }.

This formula – first proposed by L. Zadeh himself – is known as Zadeh’s extension
principle.

Let us apply Zadeh’s extension principle to our problem: resulting
formulas. In our case, we have a Boolean-valued function f(x1, x2) = (x1 < x2)
of n = 2 real-valued variables. When we compare an alternative a with fuzzy
utility µa(u) with a crisp value u0, Zadeh’s extension principle takes the following
form:

– for the value y =“true”, the degree µ+(a < u0) that the statement a < u0

is true is equal to

µ+(a < u0) = max(µa(u) : u < u0);

– for the value y =“false”, the degree µ−(a < u0) that the statement a < u0

is false is equal to

µ−(a < u0) = max(µa(u) : u ≥ u0).

Let us analyze the resulting formulas. Intuitively, since in fuzzy logic nega-
tion is represented by the function 1− a (in the sense that our degree of believe
that A is false is estimated as 1 minus degree that A is true), we should expect
that µ+(a < u0) + µ−(a < u0) = 1. Let us show, however, that this is not the
case.

Indeed, let us consider a typical case when µa(u) is a fuzzy number, i.e., when
for some value U :

– the function µa(u) increases to 1 when u ≤ U , and
– this function decreases from 1 when u ≥ U .

When u0 < U , then the function µa(u) is increasing for all u < u0 and thus,
µ+(a < u0) = µa(u0). On the other hand, since u0 < U and for u = U , we have
µa(U) = 1, we get µ−(a < u0) = 1. Thus,

µ+(a < u0) + µ−(a < u0) = 1 + µa(u) ̸= 1,

unless, of course, we consider absolutely impossible values u for which µa(u) = 0.
Similarly, when u0 ≥ U , then the function µa(u) is decreasing for all u > u0

and thus, µ−(a < u0) = µa(u0). On the other hand, since u0 ≥ U and for u = U ,
we have µa(U) = 1, we get µ+(a < u0) = 1. Thus, in this case too, we have

µ+(a < u0) + µ−(a < u0) = 1 + µa(u) ̸= 1,



unless, of course, we consider absolutely impossible values u for which µa(u) = 0.

So, we get intuitionistic fuzzy degrees. In the traditional fuzzy logic, the
sum of degrees to which each statement is true and to which this same statement
is false is always equal to 1. This means that when we compare alternatives, we
get beyond the traditional fuzzy logic.

How can we describe where we are? This is not the only case when the degrees
of confidence in a statement and in its negation doe not add up to 1. To describe
such cases, K. Atanassov came up with an idea of intuitionistic fuzzy logic (see,
e.g., [1]), in which, for each statement, we have two degrees:

– the degree to which this statement is true, and
– the degree to which this statement is false,

and these degrees do not necessarily add to 1. Our analysis this leads us to a
conclusion that the result of comparing two alternatives is an intuitionistic fuzzy
degree.

3 Discussion

What we got is somewhat different from intuitionistic fuzzy logic.
There is a minor difference between what we observe when comparing two al-
ternative and the traditional intuitionistic fuzzy logic is that:

– in the intuitionistic fuzzy logic, the sum of positive and negative degrees is
always smaller than or equal to 1, while

– in our case, the sum is always greater than or equal to 1.

However, such (minor) generalization of intuitionistic fuzzy logic has been pro-
posed in the past.

There is also a way to reconcile the results of comparing alternatives with
the traditional intuitionstic fuzzy logic. Indeed, in general, Zadeh’s extension
principle, we compute the degree to which y is a possible value. In particular,
µ+(a < u0) is the degree to which is is possible that a < u0, and µ−(a < u0)
is a degree to which it is possible that a ≥ u0. Instead, we can consider degrees
n+(a < u0) and n−(a < u0) to which it is necessary that a < u0 and that a ≥ u0

– defined, as usual, as 1 minus the degree to which the opposite statement is
possible. Then, we get

n+(a < u0) = 1− µ−(a < u0)

and
n−(< u0) = 1− µ+(a < u0).

From the fact that µ+(a < u0) + µ−(a < u0) ≥ 1, we can now conclude that

n+(a < u0) + n−(a < u0) = 2− (µ+(a < u0) + µ−(a < u0)) ≤ 1.



Thus, the degrees of necessity are consistent with the traditional intuionistic
fuzzy logic.

We can still reconstruct the original membership function from the
results of expert elicitation. We assume that the expert’s preferences are
described by a membership function µa(u0). As we have mentioned, as a result
of expert elicitation, we do not get this function, we get instead a more complex
construct, in which for each possible value u0, we get two degrees µ+(a < u0)
and µ−(a < u0).

We should mention, however, that from this construct, we can uniquely re-
construct the original membership function. Indeed, as have shown:

– when u0 ≤ U , then we have µ+(a < u0) = µa(u0) and µ−(a < u0) = 1; and
– when when u0 ≥ U , then we have µ−(a < u0) = µa(u0) and µ+(a < u0) = 1.

In both cases, we thus have

µa(u0) = min(µ+(a < u0), µ−(a < u0)).
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