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Abstract

In many practical applications ranging from self-driving cars to indus-
trial application of mobile robots, it is important to take interval uncer-
tainty into account when performing odometry, i.e., when estimating how
our position and orientation (“pose”) changes over time. In particular,
one of the important aspects of this problem is detecting mismatches (out-
liers). In this paper, we describe an algorithm to compute the rigid body
transformation, including a provably optimal sub-algorithm for detecting
mismatches.
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Rigid body transformation

t' = t + ∆t

t

Figure 1: General odometry idea: corresponding 3D keypoints on rigid objects are
employed to find the rigid body transformation between two consecutive points in
time.

1 Formulation of the Problem

Need for odometry. For a self-driving car to be successful, it needs to correctly keep
track of its position and orientation (“pose”). Often, the Global Positioning System
(GPS) can be used to compute the pose. However, in case of GPS outages due to, for
example, high buildings, the self-motion has to be computed step by step starting at
the last known position. The corresponding estimations are known as odometry; see,
e.g., [1, 4, 11, 16]. Odometry is often performed by tracking the relative position of
rigid objects, i.e., objects that do not move and do not change. Such tracking can be
useful also for human drivers and for mobile robots especially in harsh environments
(e.g. after a natural disaster); see, e.g., [6].

How odometry is performed now. At present, odometry is based on visual images
(often, stereo images) and on the use of laser scanners and similar distance-measuring
devices. Based on the images obtained at each moment of time t, appropriate image-
processing software locates an object and finds keypoints of this object; see, e.g.,
[7]. The location of these keypoints at moment t is then characterized by spatial
coordinates in a special frame coordinate system associated, e.g., with the current
location of the self-driving car.

The same procedure is repeated at the next moment of time t′ = t+ ∆t, and the
differences between the coordinates of the corresponding points are used to find the
rotation and shift relating the frame coordinate systems corresponding to moments t
and t′. Figure 1 visualizes the general idea of odometry estimation from 3D keypoints.
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Need for interval uncertainty. Measurements are never absolutely precise; in
general, measurement results somewhat differ from the actual (unknown) values of
the corresponding physical quantities. In particular, the spatial coordinates are known
with some uncertainty. Besides, temporal parameters such as an imperfect sensor clock
synchronization can also lead to such uncertainties of the spatial coordinates [12, 13,
14]. In many such situations, we do not know the exact probabilities of different
values of estimation errors, all we know is the upper bounds on the corresponding
estimation errors. In this case, if the estimated value of a coordinate is x̃ and the
upper bound on the estimation error is ∆, then the set of possible values of x is an
interval x = [x, x] = [x̃ −∆, x̃ + ∆]. Because of this fact, this type of uncertainty is
known as interval uncertainty.

It is desirable to take this uncertainty into account when processing our data.
Because of this uncertainty, the results of data processing are also only known with
uncertainty. For example, we need to present not only numerical estimates for the
rotation and shift between the two frames, we also need to describe how accurate
these estimates are.

Need to detect outliers. Algorithms producing keypoints are not perfect. In about
5% of the cases, they mismatch the corresponding point, placing it at a different
location; see, e.g., [7, 11]. This can happen, e.g., when a moving object (e.g., a
car) appears in front of the original rigid-body building. The system that looks for
keypoints, e.g., as points with the largest gradient may pick up points from the moving
object at the moment when the moving body is in front of the building. This temporary
keypoint does not correspond to any keypoint in the original image. So, from the
viewpoint of finding a proper rigid-body transformation, this keypoint is an outlier.

A similar problem occurs when the same moving body is present in both frames.
In this case, the keypoints corresponding to the building are obtained from each other
by an appropriate rotation and shift, but the keypoints corresponding to the moving
body also move, so from the viewpoint of finding the rotation and shift, these keypoints
are a mismatch.

To properly process data, we need to detect such outliers.

What is known and what we do in this paper. There exist algorithms for
detecting outliers under interval uncertainty. The challenge is that this needs to be
done fast, before the next imaging cycle. It is therefore important to design fastest
possible algorithms for solving this problem. This is what we do in this paper.

We also provide an algorithm for finding the corresponding rigid-body transforma-
tion between the frames corresponding to two consequent moments of time.

2 Towards Fast Algorithms for Detecting Out-
liers

Main idea. For a rigid body, the distance between the two points does not change.
Thus, for every two points i and j, the distances measured at time t and at time
t′ = t + ∆t must coincide. Let us denote the coordinates at time t by xi, yi, and zi,
the coordinates at time t′ by x′i, y

′
i, and z′i, and the corresponding distances by dij

and d′ij . Then, we should have

d2ij = (xi − xj)2 + (yi − yj)2 + (zi − zj)2 =
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(x′i − x′j)2 + (y′i − y′j)2 + (z′i − z′j)2 = (d′ij)
2.

In practice, we do not have the exact values of the spatial coordinates, we only
have intervals of possible values. Based on these intervals, for each i and j, we can
only compute intervals of possible values of d2ij and (d′ij)

2. The actual value of the
square of the distance must be in both intervals, thus, these intervals must have a
non-zero intersection.

If at least one of the points is mismatched, the distances become different, and there
is no longer any intersection; see, e.g., [4]. From the purely mathematical viewpoint,
it is possible that two randomly selected narrow intervals happen to intersect, but
the probability of such a non-empty intersection is very small. So, from the practical
viewpoint, if two intervals intersect, we conclude that both points are not outliers. In
other words:

• if the two intervals intersect, both points i and j are not outliers, but

• if the two intervals have an empty intersection, at least of the two points i and
j is an outlier.

Let us show how this idea can be transformed into an algorithm.

How to compute the intervals, given i and j. The intervals for distances can be
easily (and fast) computed. Namely, the expression for d2ij is a single-use expression
(see, e.g., [2, 3, 5, 8, 9, 15]) and thus, this interval can be computed exactly by using
straightforward interval computations, i.e., by replacing each operation with numbers
with the corresponding operation of interval arithmetic:[

d2ij , d
2
ij

]
= (xi − xj)

2 + (yi − yj)
2 + (zi − zj)

2,

where, as usual,
[a, a]− [b, b] = [a− b, a− b],

[a, a]2 =
[
0,max

(
a2, (a)2

)]
if a < 0 < a,

[a, a]2 =
[
min

(
a2, (a)2

)
,max

(
a2, (a)2

)]
otherwise,

and
[a, a] + [b, b] = [a+ b, a+ b].

Similarly, [
d′ij

2
, d′ij

2
]

= (x′
i − x′

j)
2 + (y′

i − y′
j)

2 + (z′
i − z′

j)
2.

How to check whether the two given intervals intersect. This part is easy:
the intervals [a, a] and [b, b] intersect if and only if the following two inequalities are
satisfied: a ≤ b and b ≤ a.

How to check whether all points are matched correctly (and there are no
outliers). Following our idea, the only way to check for outliers is to check, for some
i and j, whether the corresponding intervals have a non-empty intersection. Thus, the
corresponding checking algorithm should start with checking this property for some
pair, then maybe generating another pair, checking this property for another pair, etc.

To minimize the overall time, we thus need to minimize the number of such
intersection-checks. For a situation when there are no mismatches but we need to
check it, we can have the optimal algorithm, with the smallest possible number of
checks.
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Proposition 2.1 For n points:

• every algorithm for testing whether there are mismatches takes at least dn/2e
intersection-checks; and

• there exists an algorithm that tests whether there are mismatches by using dn/2e
intersection-checks.

Proof: Let us first prove the first part of the proposition. After each successful
intersection-check, we know that two points are correct. Thus, after k intersection-
checks, we learn correctness of at most 2k points. To be able to conclude that all
points are normal, we thus need to have 2k ≥ n, i.e., k ≥ n/2. Since k is an integer,
we must have k ≥ dn/2e. The first part of the proposition is proven.

To provide the second part, let us divide n elements into non-intersecting pairs. If
n is even, we can do this; if n is odd, we have one element unattached – we combine this
element with one of the already paired elements into one more pair. In both cases, we
have k ≥ dn/2e pairs. If all points are correct, then, by applying the intersection-check
to all these pairs, we will confirm that all the points are normal. The proposition is
proven.

What if there are mismatches. If there is at least one pair (i, j) for which the
distance intervals do not have a non-empty intersection, this means that at least one
of the points is a mismatch. Based on only this information, we do not know which of
the two points i and j is a mismatch. To find out, we need to perform the intersection-
check between one of these points i and a point i0 about which we know that it is
correct.

Such know-to-be-correct points exist: if we know that the proportion of mis-
matched points is at most m, then there are no more than m · n mismatched points,
and thus, no more than m · n mismatched pairs. These pairs contain 2m · n points.
So, if m < 0.5 (and usually, m ≤ 0.05), then at least in some pairs, both points from
the pair are correct, and thus, the above scheme will detect both points from the
corresponding pair as correct.

If the intersection-check works form the pair (i, i0), this means that the point i is
correct and thus, the point j is a mismatch. If for the pair (i, i0), the intersection-check
does not work, this means that the point i is a mismatch. But we still do not know
anything about the point j. To check whether j is a mismatch, we need to apply the
intersection-check once again, this time, to the pair (i0, j).

Resulting algorithm: description. First, we divide all points into non-intersecting
pairs (possible with one exception, see above) and apply the intersection-check to each
pair. If the intersection-check was successful for a pair, this means that both points
from this pair are correct. At the end, we select one of the correct points i0.

For each pair (i, j) that did not pass the intersection-check, we apply the same
check to the pair (i, i0). If the check succeeds, we conclude that i is correct and j is
a mismatch. If the check fails, we conclude that i is a mismatch, and check the pair
(i0, j). If this check succeeds, then j is a correct point; if it fails, then j is also a
mismatch.

Resulting algorithm: worst-case complexity. In the worst case, we need two
extra checks for each mismatched point. Since we have no more than m ·n mismatched
points, we thus need ≤ dn/1e+ 2m · n intersection-checks.
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In particular, for m = 0.05, we need ≤ 0.6n+ 1 intersection-checks – slightly more
that ≤ 0.5n + 1 checks needed for the case when all points are correct and there are
no mismatches.

Resulting algorithm: average-case complexity. Since the proportion of mis-
matched points is m, the probability that a randomly selected point is a mismatch
is equal to m. In a randomly selected pair, we select both points independently, so
the probability that both points are mismatches is thus equal to m2 (we ignore the
possibility of selecting the same point twice, since for large n it is very small, and we
usually have up to n = 50 keypoints). There are m2 · n such pairs. For each such
pair, we need two extra intersection-checks, so the total amount of intersection-checks
corresponding to such pairs is 2m2 · n.

The remaining m−m2 proportion of mismatched points belong to pairs in which
only one point is a mismatch. Thus, there are (m − m2) · n such pairs. When we
perform an additional intersection-check for each such pair, then:

• with probability 1/2, we select this point in the additional intersection-check,
and thus we need 2 additional checks;

• with probability 1/2, we select the correct point in the additional intersection-
check and thus, as we mentioned earlier, we need only one extra intersection-
check.

Thus, on average, for each such pair, we need (1/2) · 2 + (1/2) · 1 = 3/2 additional
intersection-checks, so to the total average amount of extra intersection-checks corre-
sponding to such pairs is 1.5 · (m−m2) · n.

So, the overall average computation time is equal to

dn/2e+ 2m2 · n+ 1.5 · (m−m2) · n ≈ (0.5 + 1.5 ·m+ 0.5 ·m2) · n.

In particular, for m = 0.05, we need, on average, 0.5775n intersection-checks – slightly
more that 0.5n checks needed for the case when all points are correct and there are no
mismatches and slightly less than 0.6n intersection-checks needed in the worst case.

How to parallelize this algorithm. If we have many processors working in parallel,
then, on the first stage, when we apply the intersection-check to each pair, all these
applications can be done in parallel. On the second stage, for each pair (i, j) that did
not pass the original test, we can apply the intersection-check to both pairs (i0, i) and
(i0, j) at the same time – and to all such pairs in parallel. Thus, on a highly parallel
computer system, we can solve this problem in two steps.

Also, for each intersection-check, we can perform all subtractions in parallel, then
all squarings in parallel, then all additions in two steps, and both comparisons (a ≤ b
and b ≤ a) also in parallel.

3 How to Actually Find the Angles and Shifts
Corresponding to Rotation and Shift Between
Frames

Discussion. In the 2-D case, this problem has been solved in [10] by using forward-
backward contractors. We want to extend this solution to the 3-D case, but use linear
programming instead.
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In this extension, we can use the fact that the frames corresponding to the next
moment of time are very close; thus, the angles describing a rotation between the two
frames are very small, so we can safely ignore terms which are quadratic or higher
order in terms of the angles and only keep linear terms in the resulting expansion.
This is what we will do in this paper. (If we want to be precise, this can be easily
done: we can bound the remainder and add this bound on the estimate ∆′ of the
corresponding uncertainty.)

General rotation formula and its linearized form. A general transformation of
points in a rigid body can be described as a rotation followed by a shift (translation):
X = (x, y, z)→ X ′ = RX +S, where S = (sx, sy, sz) is a shift, and a general rotation
R can be represented as a composition of rotations around all three coordinate planes:

R =

cosψ − sinψ 0
sinψ cosψ 0

0 0 0

 cos θ 0 sin θ
0 0 0

− sin θ 0 cos θ

0 0 0
0 cosϕ sinϕ
0 sinϕ cosϕ

 =

cos θ cosψ sinϕ sin θ cosψ − cosϕ sinψ cosϕ sin θ cosψ + sinϕ sinψ
cos θ sinψ sinϕ sin θ sinψ + cosϕ cosψ cosϕ sin θ sinψ − sinϕ cosψ
− sin θ sinϕ cos θ cosϕ cos θ

 .

If we only keep terms which are linear in terms of small angles, then for each small
angle α and β, we get sinα ≈ α, cosα ≈ 1, and sinα sinβ ≈ 0. Thus, in this
linear approximation, the relation between the coordinates in the two frames takes the
following form – taking into account that we can also have shifts sx, sy, and sz:

x′ = x− ψ · y + θ · z + sx;

y′ = ψ · x+ y − ϕ · z + sy;

z′ = −θ · x+ ϕ · y + z + sz.

Here, x = x̃ + ∆x, etc., where the differences ∆x etc. are usually also small. Thus,
e.g., in term ψ · y = ψ · (ỹ + ∆y) we can safely ignore the quadratic term ψ ·∆y and
thus get ψ · y ≈ ψ · ỹ. As a result, the above formulas take the following form:

x̃′ + ∆x′ = x̃+ ∆x− ψ · ỹ + θ · z̃ + sx;

ỹ′ + ∆y′ = ψ · x̃+ ỹ − ϕ · z̃ + sy;

z̃′ + ∆z′ = −θ · x̃+ ϕ · ỹ + z̃ + ∆z + sz.

The first equation can be rewritten as

x̃− x̃′ − ψ · ỹ + θ · z̃ + sx = ∆x′ −∆x.

The values ∆x and ∆x′ occur only in the first equation – and not in equations cor-
responding to other matched points in two frames. All we know about these values
are the bounds |∆x| ≤ ∆x and |∆x′| ≤ ∆′

x. Thus, the set of possible value of the
difference ∆x′ −∆x is the interval [−(∆x + ∆′

x),∆x + ∆′
x]. So, the existence of such

values is equivalent to the following inequalities:

−(∆x + ∆′
x) ≤ x̃− x̃′ − ψ · ỹ + θ · z̃ + sx ≤ ∆x + ∆′

x,

or, equivalently, that

x̃′ − x̃−∆x −∆′
x ≤ −ψ · ỹ + θ · z̃ + sx ≤ x̃′ − x̃+ ∆x + ∆′

x. (1)
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Similarly, the y- and z-equations take the following forms:

ỹ′ − ỹ −∆y −∆′
y ≤ ψ · x̃− ϕ · z̃ + sy ≤ ỹ′ − ỹ + ∆y + ∆′

y; (2)

z̃′ − z̃ −∆z −∆′
z ≤ −θ · x̃+ ϕ · ỹ + sz ≤ z̃′ − z̃ + ∆z + ∆′

z. (3)

Resulting algorithm. For each matched point, we have similar three inequalities.
All these inequalities have the same six unknowns: three angles and three shifts. To
find the smallest and the largest value of each of these unknowns u, we use linear
programming to find the smallest (or largest) value of this parameter u under all the
conditions (1)–(3) corresponding to all the keypoints.

4 Conclusions

Given a set of corresponding 3D points between distinct moments in time, this paper
introduces an algorithm to estimate the so-called rigid body transformation under in-
terval uncertainty. The computation of this rigid body transformation is, for example,
important in the context of mobile robotics where it is often used to describe the
motion of a mobile robot. However, outliers can occur during the generation of the
aforementioned 3D point correspondences, thus requiring an efficient outlier detection
algorithm, which we also introduce in this work.

In the future, we aim to extend our algorithm to a dynamical system by also taking
velocities or accelerations measured by the mobile robot into account. This requires
us to additionally incorporate differential equations into the estimation of the robot’s
pose.
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