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Abstract

The standard way to describing the road’s roughness it to use a sin-
gle numerical characteristics called International Roughness Index (IRI).
This characteristic describes the effect of the road roughness on a vehicle
of standard size. To estimate IRI, practitioners tried to use easily avail-
able vehicles (whose size may be somewhat different) and then estimate
IRI based on these different-size measurements. The problem is that the
resulting estimates of IRI are very inaccurate — which means that a sin-
gle numerical characteristic like IRI is not sufficient to properly describe
road roughness. In this paper, we show that the road roughness can be
described by a fractal (power law) model. As a result, we propose to
supplement IRI with another numerical characteristic: the power-law ex-
ponent that describes how the effect of roughness changes when we change
the size of the vehicle.

1 Formulation of the Problem

It is important to measure pavement roughness. In the ideal world,
roads must be perfectly smooth. In real life, roads can be somewhat rough.
Even when we build a perfectly smooth road, eventually, it becomes rougher.

Rough pavement makes driving less comfortable, adds wear and tear to the
vehicles, and may even increase the possibility of accidents. It is therefore
important to make sure that roads are sufficiently smooth. For this purpose, it
is important to have objective measures of pavement roughness.



How pavement roughness is estimated now: the main idea of IRI.
The most commonly used roughness measure is known as the International
Roughness Index (IRI). This model assumes a car of certain size, and estimates
the pavement roughness based on the effect of this roughness on this particular
type of car; see, e.g., [1, 2, 4].

The problem with IRI. Since the IRI is based on the reaction of a car to the
pavement roughness, a reasonable idea is to place a sensor in an actual car, and
use the sensor’s recordings to estimate the IRI.

The problem is that the actual cars are all somewhat different in size, they
somewhat differ from the ideal car used in the definition of IRI. As a result of
this difference, recordings made in different size cars lead, in general, to values
which are somewhat different from IRI.

Maybe we should go beyond IRI. Several researchers have been trying to
find out how we can estimate the actual IRI (based on the ideal-size car) from
the recordings made in a car of different size. This seems like a very reasonable
idea:

e collect data about different size cars following the same road segment, and
e find the best-fit coefficients of the corresponding regression.

The problem is that the resulting regression formula turns out to be very
crude, providing only a very rough approximation for the IRI. In plain English,
this means that when you have two road segments which similarly affect a larger-
size car, they may have a somewhat different effect on an IRI-standard-size car.

In other words, it means that a single number — describing the effect of
pavement roughness on cars of one standard size — is not sufficient to describe
the effect of roughness on cars of different size. To describe this effect, we need
to supplement the IRI with another parameter that describes how this effect
changes with the vehicle’s size.

What we do in this paper. In this paper, we use the empirical pavement
roughness data to come up with a proposed additional parameter for describing
road roughness.

2 Empirical Data

In our analysis, we use the same data that was collected to motivate the IRI,
namely, the data described in [4]. This data describes how the root mean square
deviation d — measured in m/km — depends on the length L (in cm) of the road
interval over which it is measured. This data is presented in the following table.
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3 Our Analysis of the Available Data

General idea. In our analysis, we took into account that the in many similar
practical situations when we encounter a non-smooth line — e.g., in analyzing
the coastline — a good model for the corresponding non-smoothness is a fractal
model, in which the dependence of the root mean square deviation d on the
corresponding length L is described by the power law

d=dy- L% (1)
see, e.g., [3].

How to find the parameters of the power law. In the power law, the
dependence on the parameters dg and « is non-linear, but this dependence can
be simplified if we go to log-log scale, i.e., if we consider the dependence of
In(d) of In(L). Indeed, if we take the natural logarithm of both sides of the
formula (1), we get a linear equation

In(d) = In(do) + o - In(L). 2)

For this linear equation, we can find the coefficients In(dy) and « by using the
usual Least Squares techniques.

Our data fit the power model perfectly. The Least Squares analysis has
shown that the above data fit the power model perfectly well, see Fig. 1.

Doublechecking. To doublecheck that we indeed have a power law model, we
tried to match the above data with the linear dependence d = a - L + b, and we
got a much worse fit, see Fig. 2.

4 Conclusion

We believe that an adequate description of road roughness should include a
dependence on the length L — the contact length describing the contact between
the tire and the road. The larger the vehicle, the larger this contact length.

In general, according to our findings, we expect that any characteristics C
of roughness — including IRI — should follow the power law dependence C(L) =
C(Lg)-(L/Lg)“, for an appropriate coefficient . Thus, to properly characterize
the road segment, we recommend to supplement the standard value C(Lg) with
the parameter « that describes how this value changes when we consider vehicles
of different size.
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Figure 1: Confirmation of power law
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Figure 2: Testing a simple linear dependence



