Confirmation Bias in Systems Engineering: A Pedagogical Example

Griselda Acosta¹, Eric Smith², and Vladik Kreinovich³
¹Department of Electrical and Computer Engineering
²Department of Industrial, Manufacturing, and Systems Engineering
³Department of Computer Science
University of Texas at El Paso
500 W. University
El Paso, TX 79968, USA
gvacosta@miners.utep.edu, esmith2@utep.edu, vladik@utep.edu

Abstract

One of the biases potentially affecting systems engineers is the confirmation bias, when instead of selecting the best hypothesis based on the data, people stick to the previously-selected hypothesis until it is disproved. In this paper, on a simple example, we show how important is to take care of this bias: namely, that because of this bias, we need twice as many experiments to switch to a better hypothesis.

1 Formulation of the Problem

Confirmation bias. It is known that our intuitive reasoning shows a lot of unexpected biases; see, e.g., [2]. One of such biases is a confirmation bias, when, instead of selecting the best hypothesis based on the data, people stick to the previously-selected hypothesis until it is disproved. This bias is ubiquitous in systems engineering; see, e.g., [1, 4, 5, 8].

How important is it to take the confirmation bias into account? Taking care of the confirmation bias requires some extra effort; see, e.g., [3, 7, 8, 9] and references therein. A natural question is: is the resulting improvement worth this extra effort? How better the result will we get?

In this paper, on a simple example, we show that the result is drastically better: namely, that if we properly take this bias into account, then we will need half as many experiments to switch to a more adequate hypothesis.
Analysis of the Problem

Description of the simple example. Let us consider the simplest possible case when we have a parameter a that may be 0 and may be non-zero, and we directly observe this parameter. We will also make the usual assumption that the observation inaccuracy is normally distributed, with 0 mean and known standard deviation σ.

In this case, what we observe are the values x_1, \ldots, x_n which are related to the actual (unknown) value a by a relation $x_i = a + \varepsilon_i$ ($i = 1, \ldots, n$), where ε_i are independent normally distributed random variables with 0 means and standard deviation σ.

Two approaches. In the ideal approach, we select one of the two models – the null-hypothesis $a = 0$ or the alternative hypothesis $a \neq 0$ – by using the usual Akaike Information Criterion (AIC); see, e.g., [6].

In the confirmation-bias approach, we estimate the value a based on the observations x_1, \ldots, x_n, and we select the alternative hypothesis only if the resulting estimate is statistically significantly different from 0 – i.e., e.g., that the 95% confidence interval for the value a does not contain 0.

What if we use AIC. In the AIC, we select a model for which the difference $\text{AIC} = 2k - 2 \ln(\hat{L})$ is the smallest, where k is the number of parameters in a model and \hat{L} is the largest value of the likelihood function L corresponding to this model.

The null-model $a = 0$ has no parameters at all, so for this model, we have $k = 0$. For n independent measurement results, the likelihood function is equal to the product of the values

$$
\frac{1}{\sqrt{2\pi} \cdot \sigma} \cdot \exp \left(-\frac{x_i^2}{2\sigma^2} \right)
$$

of the Gaussian probability density function corresponding to these measurement results x_i. Thus,

$$
L = \prod_{i=1}^{n} \frac{1}{\sqrt{2\pi} \cdot \sigma} \cdot \exp \left(-\frac{x_i^2}{2\sigma^2} \right)
$$

and so, for this model,

$$
\text{AIC}_0 = -2 \ln(L) = 2n \cdot \ln \left(\sqrt{2\pi} \cdot \sigma \right) + \frac{1}{\sigma^2} \sum_{i=1}^{n} x_i^2.
$$

We assume that $x_i = a + \varepsilon_i$, where the mean value of ε_i is 0 and the standard deviation is σ. Thus, the expected value of x_i^2 is equal to $a^2 + \sigma^2$. For large values n, due to the Law of Large Numbers (see, e.g., [6]), the average $\frac{1}{n} \sum_{i=1}^{n} x_i^2$ is approximately equal to the expected value $E[x_i^2] = a^2 + \sigma^2$. Thus,
\[\sum_{i=1}^{n} x_i^2 \approx n \cdot (a^2 + \sigma^2) \] and hence,

\[\text{AIC}_0 = 2n \cdot \ln \left(\sqrt{2\pi} \cdot \sigma \right) + \frac{1}{\sigma^2} \cdot n \cdot (a^2 + \sigma^2). \quad (1) \]

The alternative model \(a \neq 0 \) has one parameter \(a \), so here \(k = 1 \). The corresponding likelihood function is then equal to

\[L = \prod_{i=1}^{n} \frac{1}{\sqrt{2\pi} \cdot \sigma} \cdot \exp \left(-\frac{(x_i - \hat{a})^2}{2\sigma^2} \right). \]

We select the parameter \(a \) that maximizes the value of this likelihood function. Maximal likelihood is the usual way of estimating the parameters, which in this case leads to \(\hat{a} = \frac{1}{n} \cdot \sum_{i=1}^{n} x_i \). For large \(n \), this estimate is close to the actual value \(a \), so we have

\[\hat{L} = \prod_{i=1}^{n} \frac{1}{\sqrt{2\pi} \cdot \sigma} \cdot \exp \left(-\frac{(x_i - a)^2}{2\sigma^2} \right). \]

For this model, \(x_i - a = \varepsilon_i \), thus,

\[\text{AIC}_1 = 2 - 2 \ln \left(\hat{L} \right) = 2 + 2n \cdot \ln \left(\sqrt{2\pi} \cdot \sigma \right) + \frac{1}{\sigma^2} \cdot n \cdot \sum_{i=1}^{n} \varepsilon_i^2. \]

For large \(n \), we have \(\sum_{i=1}^{n} \varepsilon_i^2 \approx n \cdot \sigma^2 \), hence

\[\text{AIC}_1 = 2 + 2n \cdot \ln \left(\sqrt{2\pi} \cdot \sigma \right) + \frac{1}{\sigma^2} \cdot n \cdot \sigma^2. \quad (2) \]

The second model is preferable if \(\text{AIC}_1 < \text{AIC}_0 \). By deleting common terms in these two values \(\text{AIC}_i \), we conclude that the desired inequality reduces to

\[2 < \frac{n \cdot a^2}{\sigma^2}, \] i.e., equivalently, to

\[n > \frac{2\sigma^2}{a^2}. \quad (3) \]

What if we use a confirmation-bias approach. In the confirmation-bias approach, we estimate \(a \) – and we have already mentioned that the optimal estimate is \(a = \frac{1}{n} \cdot \sum_{i=1}^{n} x_i \). It is known (see, e.g., [6]) that the standard deviation of this estimate is equal to \(\sigma_e = \frac{\sigma}{\sqrt{n}} \). Thus, the corresponding 95% confidence interval has the form \([a - 2\sigma_e, a + 2\sigma_e]\). The condition that this interval does not
contain 0 is equivalent to $|a| > 2\sigma_e$, i.e., equivalently, to $a^2 > 4\sigma_e^2$. Substituting the above expression for σ_e into this inequality, we conclude that $a^2 > 4 \cdot \frac{\sigma^2}{n}$, i.e., equivalently, that

$$n > \frac{4\sigma^2}{a^2}. \quad (4)$$

Conclusion. By comparing the expressions (3) and (4) corresponding to the two approaches, we can indeed see that the confirmation-bias approach requires twice as many measurements than the approach in which we select the best model based on the data.

Thus indeed, avoiding confirmation bias can lead to a drastic improvement in our estimates and thus, in our decisions.

Acknowledgments

This work was supported in part by the National Science Foundation grants 1623190 (A Model of Change for Preparing a New Generation for Professional Practice in Computer Science) and HRD-1242122 (Cyber-ShARE Center of Excellence).

References

