
Smaller Standard Deviation for Initial Weights

Improves Performance of Classifying Neural

Networks: A Theoretical Explanation of

Unexpected Simulation Results

Diego Aguirre, Philip Hassoun, Rafael Lopez,
Crystal Serrano, Marcoantonio R. Soto, Andrea Torres,

and Vladik Kreinovich
Department of Computer Science

University of Texas at El Paso, El Paso, TX 79968, USA
daguirre6@utep.edu, pchassoun@miners.utep.edu

relopez6@miners.utep.edu, cserrano5@miners.utep.edu
mrsoto3@miners.utep.edu, aftorres@miners.utep.edu

vladik@utep.edu

Abstract

Numerical experiments show that for classifying neural networks, it
is beneficial to select a smaller deviation for initial weights that what is
usually recommended. In this paper, we provide a theoretical explanation
for these unexpected simulation results.

1 Formulation of the Problem

Classifying neural networks: a brief reminder. In deep learning [2], a
neural network that classifies into C classes works as follows:

• Computations start with the values x1, . . . , xv describing the object that
we need to classify. These values are the input signals for the first layer:

si,1 = xi for i = 1, . . . , n0
def
= v.

• On each layer `, input signals s1,`, . . . , sn`−1,` to this layer get transformed
into outputs

si,`+1 = max

n`−1∑
j=1

w
(`)
i,j · sj,` − w

(`)
i,0 , 0

 ,

1



where w
(`)
i,j are appropriate weights, and n` denotes the number of neurons

in the `-th layer.

• These outputs serve as inputs to the next layer `+ 1.

We do this until we reach the last layer L, where we use softmax; namely:

• based on C neural outputs zi = si,L,

• we compute the probability pi of being in a i-th class as

pi =
exp(β · zi)

C∑
j=1

exp(β · zj)

for some β > 0.

Selecting initial weights is important. We have several objects for which
the know the corresponding classification c(k). Each of these objects is charac-

terized by the numerical values x
(k)
1 , . . . , x

(k)
v of the corresponding quantities.

Training a neural network means selecting the weights w
(`)
i,j for which the

classification produced by the neural network is, in some reasonable sense, the
closest to the actual classification c(k).

To perform this training, we start with some initial values of all these weights

w
(`)
i,j , and then we iteratively update them until we get a good match. How fast

the network learns depends on how well we selected the initial weights.
If the initial weights are too far from the actual ones, training takes much

longer.

How initial weights are selected now. According to the current recommen-
dations [3], weights should be selected layer-by-layer, starting with the input
layer.

• For each neuron i in the currently considered layer `, we start with weights

r
(`)
i,j uniformly distributed on some interval [−Z,Z].

• Then, we apply Gram-Schmidt orthonormalization to the vectors

r
(`)
i =

(
r
(`)
i,1 , . . . , r

(`)
i,n`−1

, r
(`)
i,0

)
.

Specifically, sequentially, for i = 1, . . . , n`, we compute the new vectors

w̃
(`)
i =

r
(`)
i −

i−1∑
j=1

(
r
(`)
i , w̃

(`)
j

)
∥∥∥∥∥r(`)i −

i−1∑
j=1

(
r
(`)
i , w̃

(`)
j

)∥∥∥∥∥
,

where, as usual, (a, b)
def
=
∑
j

aj · bj and ‖a‖ def
=
√∑

j

a2j .

2



• Then, we preliminarily select the weights w̃
(`)
i for neurons from this layer,

and use the already selected weights for the neurons from the previous
layers.

• For each neuron i from the currently analyzed `-th layer, we select a small
sample of size K (where K is a pre-selected number) from the list of all
available input patterns. For each pattern(

x
(k)
1 , . . . , x(k)v

)
from the selected sample, we perform the neural network computations
up to this layer, and get the outputs si,`+1(k) of this neuron. We then
compute the standard deviation σi,`+1 of the resulting K values by using
the usual statistical formulas:

si,`+1 =
1

K
·

K∑
k=1

si,`+1(k)

and

σi,`+1 =

√√√√ 1

K − 1
·

K∑
k=1

(si,`+1(k)− si,`+1)
2
.

After this, we select the re-scaled values

w
(`)
i,` =

w̃
(`)
i

σi,`+1

as the initial values of the weights of the `-th layer.

One can check that if we use these weights for the `-th layer, then for each
neuron i on this layer, the standard deviation of the K signals coming from this
neuron will be equal to σ0 = 1.

Then we freeze these weights and go to the next layer.
To select the weights from the last (linear) layer, we try our best to match

the results with the desired outputs.

Empirical observation that needs explaining. One of us (DA) tried to
use σ0 < 1 in the above algorithm. Specifically, at each layer, at the last step,

instead of the weights
w̃

(`)
i

σi,`+1
, we selected somewhat different initial weights

W
(`)
i,` = σ0 ·

w̃
(`)
i

σi,`+1
.

On several classification examples, he got much better results for σ0 = 0.5
than for the usually recommended value σ0 = 1. Once he got this result, he
tried even smaller values σ0 = 0.4 and σ0 = 0.3. In turns out, surprisingly, that
the smaller σ0, the better the results.

3



What we do in this paper. In this paper, we provide a theoretical explanation
for this unexpected empirical result.

Comment. This explanation was first announced in [1].

2 Analysis of the Problem

If we use σ0 < 1, then on the first layer, instead of the original initial weights

w
(`)
i,j , we get new weights W

(`)
i,j = σ0 · w(`)

i,j . Then, with the same weights on
other layers, we get standard deviation σ0 on each of them. After L layers, we
get new signals Zi = σ0 · zi.

3 Our Explanation

Until we get to the last layer, we do not use the actual output. So we do
now know the actual probabilities q1, . . . , qC of different classes. It is therefore
reasonable to select the initial weights so that:

• the resulting probabilities pi

• are, on average, as close to the actual (unknown) probabilities qi as pos-
sible.

The closeness can be described:

• either by the Euclidean distance

‖p− q‖2 =
∑
i

(pi − qi)2 → min,

• or by any other strictly convex function C(p, q) of p, e.g., by relative
entropy.

So, we minimize the expected value
∫
C(p, q) · ρ(q) dq.

At this stage, we do not have any information about the probabilities of
different classes. So, it is reasonable to assume that this criterion does not
change if we simply re-order the classes.

Since the function C(p, q) is convex, there is only one vector p for which
this minimum is attained; see, e.g., [4]. Thus, the optimal tuple p should also
be invariant under such re-ordering, i.e., pi = pj for all i and j. Hence, in the
optimal case, we get pi = 1/C for all i.

The use of σ0 < 1 places all zi closer to 0. Thus, the corresponding softmax
values pi are closer to the optimal values 1/c. This explains why the results of
using σ0 < 1 are better.

There is a minor difference between zi and 0 – and thus, between pi and the
optimal values 1/C. The smaller σ0, the smaller this difference.

This explains why the smaller σ0, the better the results.

4



Comment. It should be mentioned that while decreasing σ0 to a smaller positive
number makes the classification faster, we cannot decrease this value all the way
to σ0 = 0. Indeed, in this case, all the weights will be 0, so the weights for all
the neurons in each layer will be the same. Since the training is a deterministic
process, the weights of all the neurons in each layer will be updated in exactly
the same way – thus, all the neurons in each layer will remain identical. In
particular, we will have identical signals zi at the last layer – and thus, such
network will always assign equal probabilities 1/C to each of C classes.

Acknowledgments

This work was partially supported by the Universidad de Piura in Peru (UDEP)
and by the US National Science Foundation via grants 1623190 (A Model of
Change for Preparing a New Generation for Professional Practice in Computer
Science) and HRD-1242122 (Cyber-ShARE Center of Excellence).

References

[1] D. Aguirre, P. Hassoun, R. Lopez, C. Serrano, M. R. Soto, A. Torres, and
V. Kreinovich, “Smaller standard deviation for initial weights improves neu-
ral networks performance: a theoretical explanation of unexpected simula-
tion results”, Abstracts of the 23rd Joint UTEP/NMSU Workshop on Math-
ematics, Computer Science, and Computational Sciences, El Paso, Texas,
November 3, 2018.

[2] I. Goodfellow, Y. Bengio, and A. Courville, Deep Leaning, MIT Press, Cam-
bridge, Massachusetts, 2016.

[3] D. Mishkin and J. Matas, “All you need is a good init”, Tetrahedron, 2015,
Vol. 69, No. 14, pp. 3013–3018; also in: Proceedings of the International
Conference on Learning Representations ICRL’2016, San Juan, Puerto Rico,
May 2–4, 2016.

[4] R. T. Rockafeller, Convex Analysis, Princeton University Press, Princeton,
New Jersey, 1997.

5


