Why Min, Max, Opening, and Closing Stock Prices Are Empirically Most Appropriate for Predictions, and Why Their Linear Combination Provides the Best Estimate for Beta

Somsak Chanaim¹, Olga Kosheleva², and Vladik Kreinovich²
¹International College of Digital Innovation
Chiang Mai University
Chiang Mai 50200, Thailand
somsak.ch@cmu.ac.th
²University of Texas at El Paso
El Paso, Texas 79968, USA
olgak@utep.edu, vladik@utep.edu

Abstract

While we have moment-by-moment prices of each stock, we cannot use all this information to predict the future stock prices, we need to combine them into a few characteristics of the daily stock price. Empirically, it turns out that the best characteristics are the lowest daily price, the highest daily price, the opening price, and the closing price. In the paper, we provide a theoretical explanation for this empirical phenomenon. We also explain why empirically, it turns out that the best way to find the stock’s beta coefficient is to consider a convex combination of the about four characteristics.

1 Formulation of the Problem

Predicting stock prices is important. To decide on the best investment strategy, it is important to predict future prices of different financial instruments.

Machine learning – currently the best way to predict stock prices. In the past, complex analytical models were used to predict future stock prices. However, these models, whether they are linear or nonlinear, provide only an approximate description of the corresponding dynamics: the real dynamics is much more complex. It is therefore reasonable to use prediction techniques which are not limited to any specific class of models. Such techniques are known as machine learning techniques.
At present, machine learning techniques – usually, techniques of deep learning (see, e.g., [2]) indeed provide empirically the best way to predict stock prices.

What input should we use for prediction? Traditionally, most financial markets report closing daily prices of different financial instruments. Sometimes, opening prices are also reported, and at present, with everything online, one can trace moment-by-moment changes in the price of each instrument.

At first glance, it may seem that the more information we use, the more accurate the predictions will be. To some degree, this is true: if we start with scarce data and add more data, we get more and more accurate predictions. However, after a while, adding more data becomes counter-productive, for two reasons.

First, data comes with noise – e.g., a significant part of moment-by-moment fluctuations in prices is caused by short-term traders trying to benefit from small changes in prices. These changes do not help in predicting longer-term trends, they only obscure the picture.

Second, by their structure, deep neural networks cannot input too much data. If you try to feed too much data, they will compress it anyway, by using general data compression techniques. From this viewpoint, it is definitely better to perform compression tailored to the application area – and thus, leading to the smallest possible information loss.

First empirical fact. It turns out that the best prediction occurs when we use the following four characteristics: the smallest daily price, the largest daily price, the opening price, and the closing price; see [1] and references therein.

First problem. How can we explain this empirical fact?

In this paper, we provide a theoretical explanation for this empirical phenomenon.

Need to estimate the stock’s beta. Of course, skilled financial gurus do not just use computer predictions, they also add their knowledge and their skills. To best exercise this knowledge, they need to know the major characteristics of each financial instrument. One of the most widely used characteristics of this type is *beta* β, a parameter describing the linear dependence

$$r - r_0 \approx \beta \cdot (r_m - r_0),$$

(1)

where r is return on the stock (as measured by adding the relative change in its price and the relative value of the dividends paid), r_0 is the risk-free rate of return (e.g., investment in US bonds), and r_m is the average market’s rate of return.

Which values r and r_m should we use? If we only use the closing prices, then we have no choice: we use the closing price r for the individual stock and the closing price r_m for the whole market. However, if we take more information into account, we can use different values: we can use opening prices, we can use min and max prices, we can use different combinations of all these prices.
Which combination is the best? A natural idea is to select combinations that leads to the most accurate formula (1) – e.g., the formula with the largest possible value of R^2; see, e.g., [4].

Second empirical fact. It turns out that the best is a linear combination of the four above-described stock prices: min, max, opening, and closing; see, e.g., [1] and references therein.

Second problem. How can we explain this empirical fact?

In this paper, we provide a theoretical explanation for this empirical phenomenon as well.

2 Why Min, Max, Opening and Closing Prices:

Explaining the First Empirical Phenomenon

Towards formulating the problem in precise terms. We start with the prices p_1, \ldots, p_n at different moments of time. We need to combine these prices into several characteristics.

Different characteristics correspond to different combination rules. In each such rule, the combination can be done in real time:

- first, when we observe the first two prices p_1 and p_2, we combine them into a single value; let us denote the result of this combination by $p_1 \ast p_2$;

- then, as we observe the third value p_3, we combine the previous result with this new value, thus getting $(p_1 \ast p_2) \ast p_3$, etc.

Alternatively, if for some reason we missed the first value p_1, we could first combine p_2 and p_3 into a single value $p_2 \ast p_3$, and then, once we learn the value p_1, combine it with our result-so-far, producing the value $p_1 \ast (p_2 \ast p_3)$.

The combination result should reflect the stock’s overall behavior, it should not depend on the order in which we processed the data. Thus, it is reasonable to expect that we have

$$(p_1 \ast p_2) \ast p_3 = p_1 \ast (p_2 \ast p_3),$$

i.e., in mathematical terms, that the combination operation be *associative*.

The result of the combination should be within the same bounds as the combined values. Another natural requirement is that the result $p_1 \ast p_2$ of combining two prices should be within the same range as the original values p_1 and p_2. In other words, this result must be between the smallest and the largest of these two values:

$$\min(p_1, p_2) \leq p_1 \ast p_2 \leq \max(p_1, p_2).$$
Scale-invariance. The result should not depend on what unit we use, whether we consider prices in dollar or translate them into Euros or pounds (or Thai Bahts).

If, instead of the original monetary unit, we use a new unit which is k times smaller, then all numerical values are multiplied by k. So, in the new units:

- instead of the original value p_1, we get $k \cdot p_1$,
- instead of the original value p_2, we get $k \cdot p_2$, and
- instead of the combined value $p_1 \cdot p_2$, we get $k \cdot (p_1 \cdot p_2)$.

Instead of combining values in the original units and then transforming to new units, we could combine the values $k \cdot p_1$ and $k \cdot p_2$ and get the result $(k \cdot p_1) \cdot (k \cdot p_2)$. A natural requirement is that the combination result should not depend on what monetary units we choose, i.e.:

$$k \cdot (p_1 \cdot p_2) = (k \cdot p_1) \cdot (k \cdot p_2).$$ \hspace{1cm} (4)

Shift-invariance. As we have mentioned in our description of the beta coefficient, what is important is not so much the actual price of a stock, but rather the difference $p_i - p_0$ between the stock price and the value p_0 we would have gotten if we instead invested this amount in bonds. The bond’s prices also fluctuate, and the change in the bond price from p_0 to a different amount $p_0 + a$ is equivalent to a constant shift in all the values of the stock price, from p_i to $p_i + a$. Indeed, after this change, the difference remains the same:

$$(p_i + a) - (p_0 + a) = p_i - p_0.$$

It is therefore reasonable to require that the result of the combination does not change is we replace all original values p_i with shifted values $p_i + a$. After this replacement:

- instead of the original value p_1, we get $p_1 + a$,
- instead of the original value p_2, we get $p_2 + a$, and
- instead of the combined value $p_1 \cdot p_2$, we get $(p_1 \cdot p_2) + a$.

Instead of combining the original values and then performing the shift, we could combine the shifted values $p_1 + a$ and $p_2 + a$ and get the result $(p_1 + a) \cdot (p_2 + a)$. A natural requirement is that the combination result should not depend on whether we use the original values or the shifted values, i.e.:

$$(p_1 \cdot p_2) + a = (p_1 + a) \cdot (p_2 + a).$$ \hspace{1cm} (5)

We are ready to formulate our main result. No, we can formulate our main result.

Definition 1. Let $a \ast b$ be a binary operation that transforms pairs of real numbers into real numbers.
We say that \ast is associative if it satisfies the formula (2) for all p_1, p_2, and p_3.

We say that \ast is bounded if it satisfies the formula (3) for all p_1 and p_2.

We say that \ast is scale-invariant if it satisfies the formula (4) for all p_1, p_2, and $k > 0$.

We say that \ast is shift-invariant if it satisfies the formula (5) for all p_1, p_2, and a.

Theorem 1. Every associative, bounded, scale- and shift-invariant operation has one the following forms:

$$p_1 \ast \ldots \ast p_n = \min(p_1, \ldots, p_n); \quad (6)$$

$$p_1 \ast \ldots \ast p_n = \max(p_1, \ldots, p_n); \quad (7)$$

$$p_1 \ast \ldots \ast p_n = p_1; \quad (8)$$

$$p_1 \ast \ldots \ast p_n = p_n. \quad (9)$$

Vice versa, each of these four operations is associative, bounded, scale- and shift-invariant.

Proof.

1°. That all four operations satisfy the desired properties is easy to show. Let us show that, vice versa, each operation $p_1 \ast p_2$ that satisfies these properties has only of the four forms.

For this, let us consider three possible relations:

- $p_1 = p_2$,
- $p_1 < p_2$, and $p_1 > p_2$.

2°. For $p_1 = p_2$, the inequalities (3) imply that $p_1 \ast p_1 = p_1$.

3°. For $p_1 < p_2$, for $a = p_1$ and $k = p_2 - p_1$, we get $k \cdot 0 + a = p_1$ and $k \cdot 1 + a = p_2$.

Thus, due to properties (4) and (5), we have

$$p_1 \ast p_2 = (k \cdot 0 + a) \ast (k \cdot 1 + a) = (k \cdot 0) \ast (k \cdot 1) + a = k \cdot (0 \ast 1) + a.$$

Thus,

$$p_1 \ast p_2 = \alpha \cdot (p_2 - p_1) + p_1 = \alpha \cdot p_2 + (1 - \alpha) \cdot p_1,$$

where we denoted $\alpha \overset{\text{def}}{=} 0 \ast 1$.

From the condition (3) we conclude that $0 \leq \alpha = 0 \ast 1 \leq 1$. Let us now use associativity. Due to associativity, we have

$$0 \ast \alpha = 0 \ast (0 \ast 1) = (0 \ast 0) \ast 1 = 0 \ast 1 = \alpha.$$

Here, $0 \leq \alpha$, so

$$0 \ast \alpha = \alpha \cdot \alpha + (1 - \alpha) \cdot 0 = \alpha^2.$$

From the condition $\alpha^2 = \alpha$, we conclude that either $\alpha = 0$ or $\alpha = 1$.

• In the first case, \(p_1 \ast p_2 = p_1 \).
• In the second case \(p_1 \ast p_2 = p_2 \).

\(4^\circ \). For \(p_1 > p_2 \), for \(a = p_2 \) and \(k = p_1 - p_2 \), we get \(k \cdot 1 + a = p_1 \) and \(k \cdot 0 + a = p_2 \). Thus, due to properties (4) and (5), we have
\[
p_1 \ast p_2 = (k \cdot 1 + a) \ast (k \cdot 0 + a) = (k \cdot 1) \ast (k \cdot 0) + a = k \cdot (1 \ast 0) + a.
\]
Thus,
\[
p_1 \ast p_2 = \beta \cdot (p_1 - p_2) + p_2 = \beta \cdot p_1 + (1 - \beta) \cdot p_2,
\]
where we denoted \(\beta \overset{\text{def}}{=} 1 \ast 0 \).

From the condition (3) we conclude that \(0 \leq \beta = 1 \ast 0 \leq 1 \). Let us now use associativity, we have
\[
\beta \ast 0 = (1 \ast 0) \ast 0 = 1 \ast (0 \ast 0) = 1 \ast 0 = \beta.
\]
Here, \(0 \leq \beta \), so
\[
\beta \ast 0 = \beta \cdot \beta + (1 - \beta) \cdot 0 = \beta^2.
\]
From the condition \(\beta^2 = \beta \), we conclude that either \(\beta = 0 \) or \(\beta = 1 \).
• In the first case, \(p_1 \ast p_2 = p_1 \).
• In the second case \(p_1 \ast p_2 = p_2 \).

\(5^\circ \). So, depending on which of the two cases holds for both possible relations \(p_1 \leq p_2 \) and \(p_2 \leq p_1 \), we have four cases:
• if \(p_1 \ast p_2 = p_1 \) for \(p_1 < p_2 \) and \(p_1 \ast p_2 = p_2 \) when \(p_1 > p_2 \), then, in general,
\[
p_1 \ast p_2 = \min(p_1, p_2);
\]
• if \(p_1 \ast p_2 = p_2 \) for \(p_1 < p_2 \) and \(p_1 \ast p_2 = p_1 \) when \(p_1 > p_2 \), then, in general,
\[
p_1 \ast p_2 = \max(p_1, p_2);
\]
• if \(p_1 \ast p_2 = p_1 \) for \(p_1 < p_2 \) and \(p_1 \ast p_2 = p_1 \) when \(p_1 > p_2 \), then, in general,
\[
p_1 \ast p_2 = p_1;
\]
• if \(p_1 \ast p_2 = p_2 \) for \(p_1 < p_2 \) and \(p_1 \ast p_2 = p_2 \) when \(p_1 > p_2 \), then, in general,
\[
p_1 \ast p_2 = p_2.
\]
Thus, we get exactly all four combination operations.

The theorem is proven.

Comment. Interestingly, a similar result can be proven for a different problem: how the overall emotional experience depends on the emotions experiences at different moments of time; see, e.g., [3]. In this case too, empirical data shows that the most important are the extreme and the end experiences.
3 Why Linear Combination of Four Characteristics: Explaining the Second Empirical Phenomenon

Main idea. When we combine different characteristics, it is still reasonable to require boundness and scale- and shift-invariance. However, in contrast to the previous case when we combined similar quantities, here the quantities we combine are different, so, in principle, we could use different combination operations for combining different characteristics – and thus, the associativity requirement becomes more complicated. Also here, in contrast to the previous case, while the starting price appears first, all three other combined priced appear at the same time – at the end of the day, so there is no longer a fixed order in which we should combine these characteristics. We will call the corresponding version of associativity s-associativity (s for stock).

Let us describe this in precise terms.

Definition 2.

• By a combination operation, we mean a bounded scale- and shift-invariant operation.

• We say that a function $F(c_1, c_2, c_3, c_4)$, where c_i are the four characteristics from Theorem 1, is s-associative if for each permutation

$$\pi : \{1, 2, 3, 4\} \to \{1, 2, 3, 4\},$$

there exist combination operations

$$\ast_{\pi(1)\pi(2)}, \ast_{\pi(1)\pi(2)\pi(3)}, \text{ and } \ast_{\pi(1)\pi(2)\pi(3)\pi(4)}$$

for which

$$F(c_1, \ldots, c_4) = \left(\left((c_{\pi(1)} \ast_{\pi(1)\pi(2)} c_{\pi(2)}) \ast_{\pi(1)\pi(2)\pi(3)} c_{\pi(3)}) \ast_{\pi(1)\pi(2)\pi(3)\pi(4)} c_{\pi(4)} \right) \right).$$

Comment. In other words:

• first we combine $c_{\pi(1)}$ and $c_{\pi(2)}$ into $c_{\pi(1)} \ast_{\pi(1)\pi(2)} c_{\pi(2)}$;

• then, we combine the previous result with $c_{\pi(3)}$, resulting in

$$\left((c_{\pi(1)} \ast_{\pi(1)\pi(2)} c_{\pi(2)}) \ast_{\pi(1)\pi(2)\pi(3)} c_{\pi(3)}) \right);$$

• finally, we combine the previous result with $c_{\pi(4)}$.

For example, for the trivial permutation $\pi(i) = i$, we get the following:

• first we combine c_1 and c_2 into $c_1 \ast_{12} c_2$;
then, we combine the previous result c_3, resulting in

$$(c_1 *_{12} c_2) *_{123} c_3;$$

finally, we combine the previous result with c_4, resulting in

$$((c_1 *_{12} c_2) *_{123} c_3) *_{1234} c_4.$$

Theorem 2. Every s-associative function is a convex combination of the four characteristics c_i. Vice versa, every convex combination of the four characteristics is s-associative.

Proof. It is easy to show that every convex combination operation is a combination operation in the sense of Definition 2 and thus, every convex combination of four characteristics is s-associative.

Vice versa, let us assume that a function $F(c_1, c_2, c_3, c_4)$ is s-associative. For the case when $c_1 = \min$, $c_2 = \max$, $c_3 = p_1$, and $c_4 = p_n$, we will consider two permutations: 1324 and 1423.

In the proof of Theorem 1, we showed that each combination operation $p_1 * p_2$ is equal to one convex combination when $p_1 \leq p_2$ and to another one when $p_2 \leq p_1$. If these convex combinations are different, then the separating line between these two convex combinations has the form $p_1 = p_2$.

Here, $c_1 \leq c_3 \leq c_2$, thus, $c_{13} c_3$ is a convex combination of c_1 and c_3 which is bounded from above by c_3. From $c_{13} c_3 \leq c_3 \leq c_2$, we conclude that the value $(c_{13} c_3) *_{132} c_2$ is also a convex combination of $c_{13} c_3$ and c_2 and is, thus, a convex combination of c_1, c_2, and c_3, i.e., has the form

$$(c_1 *_{13} c_3) *_{132} c_2 = a_1 \cdot c_1 + a_2 \cdot c_2 + a_3 \cdot c_3$$

for some coefficients $a_i \geq 0$ for which $a_1 + a_2 + a_3 = 1$. Thus, the function $F(c_1, \ldots, c_4)$ can be described by two convex combinations of c_i. If these expressions are different, then the separating line has the form

$$a_1 \cdot c_1 + a_2 \cdot c_2 + a_3 \cdot c_3 = c_4,$$

i.e., the form

$$a_1 \cdot c_1 + a_2 \cdot c_2 + a_3 \cdot c_3 - c_4 = 0. \quad (10)$$

Similarly, from the fact that $c_1 \leq c_4 \leq c_2$, we conclude that the function $F(c_1, \ldots, c_4)$ can be described by two convex combinations of c_i. If these expressions are different, then the separating line has the form

$$a'_1 \cdot c_1 + a'_4 \cdot c_4 + a'_3 \cdot c_3 = c_2,$$

for some coefficients a'_i that add up to 1, i.e., the form

$$a'_1 \cdot c_1 - c_2 + a'_3 \cdot c_3 + a'_4 \cdot c_4 = 0. \quad (11)$$

The equations (10) and (11) cannot describe the same set: the relative signs are different. Thus we cannot have a separating line. So, the whole function $F(c_1, \ldots, c_4)$ is described by a single convex combination.

The theorem is proven.
Acknowledgments

This work was supported in part by the National Science Foundation grants 1623190 (A Model of Change for Preparing a New Generation for Professional Practice in Computer Science), and HRD-1834620 and HRD-2034030 (CAHSI Includes).

This work was also supported by the Center of Excellence in Econometrics, Faculty of Economics, Chiang Mai University, Thailand.

The authors are thankful to Alan Wong and Hung T. Nguyen for their encouragement.

References

