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Abstract

When we design a road, we would like to check that the current de-
sign provides the road with sufficient stiffness. For this purpose, we need
to estimate the stiffness of the road based on stiffness and thickness of
different layers. There exists an empirical formula for this estimation.
In this paper, we show that this formula can be explained by natural
scale-invariance requirements.

1 Formulation of the Problem

Need to estimate stiffness of multi-layer roads. Most roads consist of
several layers:



e First, there is a layer of soil — fortified if needed.
e Then there is layer of special pavement material.
e Finally, an asphalt or concrete layer is placed on top.

The road has to have a certain stiffness, i.e., a certain value of the modulus
characterizing this stiffness. It is therefore desirable to estimate the stiffness of
the designed road with the layers of given thickness. In other words, we need
to be able to solve the following prpblem:

e we know the modulus F; and the thickness h; of each layer;

e based on this information, we need to estimate the overall modulus E of
the road.

Odemark’s equation. One of the methods for solving this problem was pro-
posed in 1949 by N. Odemark [3]; his formula is

S hi- VEN

E=|-2*—
> hi

(3)

This formula is still in use; see, e.g., [5].

How can we explain this formula. Odemark’s formula is largely empirical.
How can we explain this formula?

What we do in this paper. In this paper, we provide a theoretical explanation
for this formula, an explanation based on the ideas of symmetry — namely, on
the ideas of scale-invariance.

2 Scale-Invariance: Reminder

To measure a physical quantity, we need to select a measuring unit. In some
cases, there is a physically natural unit — e.g., in the micro-world, we can use the
electric charge of an electron as a natural measuring unit for electric charges.
However, in many other situations, there is no such fixed unit. In such cases,
it is reasonable to require that the dependence between the physical properties
remains the same — i.e., described by the same formula — if we change the
measuring unit.

If we replace the original measuring unit with a unit which is A times smaller,
then all numerical values of the quantity will be multiplied by A: x — A - x.
This transformation is known as re-scaling, and invariance with respect to this
transformation is known as scale-invariance. Scale invariance is ubiquitous in
physics; see, e.g., [2, 4].



3 Towards an Explanation

Analysis of the problem. Let us first consider the simplified case when all
the layers have the same thickness. The overall stiffness F is the “average”
stiffness, i.e., the stiffness that the road would have if all its layers have the
same stiffness F.

Let us denote the overall effect of n layers with stiffness F1q, ..., E, by

FEix...x E,,

for an appropriate combination operation a * b. In these terms, the stiffness of
the n-layer road in which each layer has stiffness F is described by the formula
FE x...x E. Thus, the desired overall effect ' can be described by the formula

Ex...«E=Fy*...xE,. (2)

The air layer with 0 stiffness does not contribute to the overall stiffness, so
we should have a x 0 = a.

If we have layers of different thickness h;, then we can divide each of these
layers into parts of the same thickness, and apply the same formula (2), i.e., we
get

Ex...«xE (hy+...4+ hy times) =

Ey % ...%x By (hy times) * ... % Ey, ... x E, (hy times). (3)

Natural properties of the combination operation axb. In the first approx-
imation, we can ignore the dependence on the order, and assume that axb = bxa,
i.e., assume that the combination operation is commutative.

It is also reasonable to assume that the result of applying this operation to a
3-layer road does not depend on which layer we start with, i.e., that we should
have axb*c = (a*xb)xc = ax*(bxc). In other words, the combination operation
should be associative.

If we made one the layers stiffer, the stiffness of the road should increase.
So, the combination operation should be strictly monotonic: if a < a’, then

axb<a *b.

Small changes in F; should lead to small changes in the overall stiffness.
In mathematical terms, this means that the combination operation should be
continuous.

Finally, we require that the combination operation be scale-invariant, i.e.,
that if axb = ¢, then, for every A\, we should have the same relation for re-scaled
values A-a, A-b, and \-c:

A-a)x(A-b)=X-c. (4)



Main result. We will show that every commutative, associative, strictly mono-
tonic, continuous, and scale-invariant combination operation for which ax0 = a
has the form

axb=(aP + bP)1/P (5)

for some p > 0.

Discussion. In other words, a * b = ¢ is equivalent to a? + b = P, and, more
generally, that a*...xb = ¢ means that a? 4...+bP = ¢P. In view of the formula

(3), this means that
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For p = 1/3, we get exactly Odemark’s formula!

4 Proof of the Main Result

1°. Let us first prove that the operation a*b has the form f(f~(a)+f~*(b)) for
some monotonic function f(a). In other words, we want to prove that axb = ¢
is equivalent to

FHa) + f7H) = fH(e), (6)
or, equivalently, that f(a) * f(b) = f(c) is equivalent to a + b = ¢, i.e., that
fla+b) = f(a) = f(b). (7)
def

Indeed, let us take f(1) = 1. Then, for every natural number m, we take

f(m) s %1 (m times).

In this case indeed,
fim)* f(m')=1%...%1 (m times) x 1 x...x1 (m' times) =

1*...%x1 (m+m times) = f(m+m’), (8)

i.e., we have the desired property (7).
Due to monotonicity, for each natural number n, we have we

O%...%0 (ntimes) =0<0x...x0x1=1,

and
1=0x...%0%x1<1x...%1 (n times).



From
Ox...%0 (n times) <1 <1x*...x1 (n times)

and continuity of the combination operation, we conclude that there exists a
value v,, for which
Up * ... %V, (n times) = 1.

We will then take

‘We will then define

F() deff< )**f(i) (m times)

One can check that for thus defined function f(a), we indeed always have the
formula (7) for rational values a and b, and by continuity, we can extend the
function f(a) to all non-negative real values a.

2°. Let us now prove that the inverse function f~!(a) is a power function — and
thus, its inverse is also a power function.

Indeed, in terms of the formula (6), scale-invariance means that if the formula
(6) is satisfied, then we have

A a)+ 710 = fH (A o). (9)

Let us denotepOléf f(a), qdef L), r 3 ~1(c), so that a = f(p), b= f(q),
and ¢ = f(r). Let us also denote t)(x) Lt 7Y\ - f(x)), so that
tap) =1 (A f(p) =

)=

YA a),
ta(@) =f"(A- fla) (

.
FHAb),
and

ta(r) = fTT A f() =T (o)

In this form, scale-invariance takes the following form: if p+¢ = r, then ¢ (p) +
ta(g) = tx(r). In other words, we have tx(p + q) = tA(p) + ta(q) for all p and gq.
For integer values p = n, we thus have

(1) = b (i) TR (i) (n times) = n - t5 (i) ,
tr (i) = L),

Similarly, for evert m, we have

t (%) —t (?11) oty (i) (m times) = m - t (i) - % (1)

Thus



In other words, we conclude that
t)\(x) :l'~t)\(].) (].0)

for all rational z. By continuity, we can conclude that this property holds for
all real values as well.

By definition of ¢, (z), the equality (10) means that f=*(\- f(z)) = tA(1) -z,
i.e., that for y = f(z), for which z = f~!(y), we have

vy =a1) - () (11)

It is known (see, e.g., [1]) that every continuous solution to this functional
equation has the form f~!(z) = A - 2% for some A and a. Thus, we get the
desired formula for the combination operation a * b = f(f~1(a) + f~1(b)).

The result is proven.

Comment. The result from [1] can be easily proven, if instead of continuity,
we make a stronger assumption that the combination operation — and thus, the
function f(a) — is differentiable. Indeed, in this case, t5(1) is a differentiable
function of A, as a ratio of two differentiable functions. Thus, we can differentiate
both sides of the equality (11) by A and take A = 1; then, we get

z - F'(x)=c-F, (12)

where F(x) ef f~1(x), F'(x) means the derivative, and c is the derivative of
the expression ¢)(1) when A = 1. The formula (12) can be rewritten as

dF
¢ F
z - -=cF
i.e., equivalently,
dF dx
= e =
F x

Integrating both parts, we get In(F) = ¢ In(z) + C, where C is the integration
constant. Applying exp(z) to both sides, we get the desired power law.
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