1-2. Use a general algorithm to design a non-deterministic finite automaton recognizing the language $(1 \cup 0)^*1$. After that, use the general algorithm to design a deterministic finite automaton recognizing this same language.
3. Use a general algorithm to transform the following finite automaton into the corresponding regular expression. This automaton has two states: a state q1 which is a start state, and a state q2 which is a final state. In the state q1, 0 leads to q2, and 1 leads to q1. In the state q2, 0 leads to q2, and 1 leads to q1.

\[
\begin{align*}
R_{S4} &= R_{S4} \cup R_{S4} R_{S2} \cdots R_{S2} \\
&= \Lambda \cup (\varnothing \cdots) = \Lambda \\
R'_{11} &= R_{11} \cup R_{11} R_{11} \cdots R_{11} \\
&= 1 \cup (0 \cdots) = 0 \cdots \\
\varnothing U (0 \cdots) &= 00^* \\
\emptyset U (\emptyset \cdots) &= \emptyset \\
\emptyset U (\emptyset \cdots) &= \emptyset \\
\end{align*}
\]

file:///Q:/cs3350.16a/test1.html
4. On the example of the automaton from Problem 3, explain, in detail, how the sequence 001100 will be presented as xyz according to the pumping lemma. For this sequence, check -- by tracing step-by-step -- that the sequence x^2z for $i = 2$ is indeed accepted by the automaton.

\[\begin{align*}
X &= \text{before 1st repeating state} \\
Y &= \text{between 1st and 2nd rep.} \\
Z &= \text{after 2nd rep.}
\end{align*} \]

\[x=0 \quad y=0 \quad z=1000 \]

The first repeating state is q_2.
So x is what is before it which is 0.0
Y is what is between the two which is 0
and Z is what is after the rep which is 1000

$x^2z = \text{is accepted}$
5. Use the Pumping Lemma to prove that the language L consisting of all the words of the type www is not regular, where w can be any word. Here:

- if w is an empty string, we get the word ε.
- if w is ab, we get $ababab$.

etc.

$L = \varepsilon$ where w is any word ε is not regular

Proof by contradiction:

Let us assume that L is regular then by pumping lemma there exist constants m such that every word s from L whose length is $|s| \geq m$ can be represented as $s = xyz$, where $\text{len}(y) > 0$, $\text{len}(xy) \leq m$ and for every $i \geq 0$, $xy^iz \in L$.

Let take $w = a^m b^m$ then $s = a^{3m} b^{3m} a^m$. Here the length is $6m$, m so by pumping lemma there exist constants m, x, y, z, since s starts with xy and $\text{len}(xy) \leq m$, this means that m and y are in the first set of $a's$, so when we take move we add a to the first set of $a's$ but the # of $a's$ in the other sets does not change. So the # of $a's$ in the first set is no longer equal to m. $xy^iz \notin L$, a contradiction. By contradiction theorem our assumption is wrong so L is not regular.
6. Use the general algorithm that we had in class to design a context-free grammar which generates exactly the words accepted by the automaton from Problem 3. Show how the word 001100 will be generated by this grammar.