FROM CONTEXT-FREE GRAMMAR (CFG) TO NON-DETERMINISTIC PDA

General idea: first, we push a dollar sign $ into the stack of stacks, to check if a stack is empty. If $ is on top, there is nothing popped off. No symbol.

Reminder: in this formalization we do not have an easy way of pushing there is nothing popped off.
Second step (common for all CFGs):
we push the starting variable S into the stack on top of $\$.

\[
\text{start} \xrightarrow{\epsilon, \epsilon \rightarrow \$} \text{empty stack} \xrightarrow{\epsilon, \epsilon \rightarrow S} \text{Working state}
\]

The last state will be the working state
3.

* Now we need to take the grammar into account. Let's use a simple example: \(S \rightarrow aBb, \ B \rightarrow bSa, \ S \rightarrow \epsilon \)

* First, for each terminal symbol, we add a rule \(\alpha, \alpha \rightarrow \epsilon \).

* In this case, we have two terminal symbols: \(a \) and \(b \).

* So, we add two such rules:

\[
\begin{align*}
\alpha, \alpha & \rightarrow \epsilon \\
\beta, \beta & \rightarrow \epsilon
\end{align*}
\]

What it means:

* If we see 'a' and there is 'a' on top of the stack, we pop it.

* If we see 'b' and there is 'b' on top of the stack, we pop it.
* Also, for each rule, $A \rightarrow u$, we pop A and we push u instead.
* How do we push $u = u_1 \ldots u_k$? It is a stack, so we need to push them one-by-one, from last to first:

\[\varepsilon, A \rightarrow u_k \rightarrow \varepsilon, \varepsilon \rightarrow u_{k-1} \rightarrow \ldots \rightarrow \varepsilon, \varepsilon \rightarrow u_1 \]

* For example, to represent the rule $S \rightarrow aBb$, we first pop S, push b, then push B, then push a:

\[\varepsilon, S \rightarrow b \rightarrow \varepsilon, \varepsilon \rightarrow B \rightarrow \varepsilon, \varepsilon \rightarrow a \]

* In the stack, they are in right order:
We do this for all the rules. Finally, we pop $ if it is on top of the stack. We did it in all previous examples. Grammar:

$ \rightarrow aBB$

$B \rightarrow bSa$, $S \rightarrow \varepsilon$, $a, a \rightarrow \varepsilon$, $b, b \rightarrow \varepsilon$

This is the desired pushdown automaton.
How do we translate derivation in CFG into acceptance by PDA?

Step by step

Example:

First, we apply the rule $S \rightarrow aBb$

Then, we apply the rule $B \rightarrow bSA$

Finally, we apply the rule $S \rightarrow \varepsilon$

We get the word $abab$

How do we accept this word by PDA?

Start

We start at starting state with empty stack

Then we push $\$\$

Then we push S, we are in working state
Now we used rule $S \rightarrow AB$.

Now we see the first symbol a, so we use rule $a \rightarrow \delta$. We write the PDA transitions.

Next, in our derivation, we use the rule $B \rightarrow \delta B\delta$. So we follow the PDA transitions and replace S with a $B\delta$. We are back in working state.

Now we see symbol a, so we use the rule $a \rightarrow \delta$. We write the PDA state transitions.
On top of the stack is b, we see b as the next unread symbol in our word $abab$ ("a" was already read), so we pop b.

Now we use the rule $S \rightarrow \epsilon$ to this rule corresponds transition $\epsilon, S \rightarrow \epsilon$.

We see a on top of the stack, a is the next unread symbol so we pop!
\begin{itemize}
 \item Now we see b on top of the stack, b is the next unread symbol $\text{\#}bab$, so already read.
 \item Now we only have $\$$ in the stack, so we pop it and go to final state.
 \item Now we are in the final state with empty stack.
 \item This means that the word abab is accepted!
\end{itemize}
Summarizing, we want to accept the word abab, which was generated by the following sequence of rules:

\[S \rightarrow aBb, \ B \rightarrow bSa, \ S \rightarrow \varepsilon; \]

\[S \rightarrow aBb \]

Start

Initial phase

Final state

Done!
Tracing the derivation of a different word is the task.
Solution:

$ \Rightarrow aBb$

1st letter

$s \Rightarrow aBb$

2nd letter

$a, a \Rightarrow \epsilon$

3rd

$\Rightarrow abab$

4th

$\Rightarrow abab$

5th

$\Rightarrow abab$

6th

$\Rightarrow abab$

7th

$\Rightarrow abab$

8th

$\Rightarrow abab$

9th

$\Rightarrow \epsilon$

Final

We accepted the word ab ab ab ab ab ab ab
I started by:

- Defining symbols:
 - S: means sign, P means positive integer, D means digit (0 or 1)

- Groupwork 2:
 - (to finish at home)

- I draw a PDA for a different grammar:
 - $S \rightarrow \epsilon$, $P \rightarrow D$
 - $S \rightarrow t$, $D \rightarrow 0, 1$

- Trace it on the example generated by this grammar:
 - $S \rightarrow t$
 - $P \rightarrow D$
 - $D \rightarrow 0$

- I trace word $+101$ generated.