1-2. Use a general algorithm to design a non-deterministic finite automaton recognizing the language $a^*(b \cup ab)$. After that, use the general algorithm to design a deterministic finite automaton recognizing this same language.
3-4. Use a general algorithm to transform the following finite automaton into the corresponding regular expression.

- This automaton has two states: a state s_1 which is a start state and a final state, and another state s_2.
- In the state s_1, a and b lead to s_2, and c leads to s_1.
- In the state s_2, a leads to s_2, and b and c lead to s_1.

Let's remove S_2:

$$R_{s,F} = R_{s,F} U (R_{s,S_2} R_{S_2} R_{F,S_2})$$
$$= \emptyset U (\emptyset \emptyset a \emptyset) = \emptyset$$

$$R_{s,S_1} = R_{s,S_1} U (R_{s,S_2} R_{S_2} R_{S_2} R_{S_2} S_1)$$
$$= \emptyset U (\emptyset a (a) (a))^*$$

$$R_{s,S_1} = R_{s,S_1} U (R_{S_1 S_2} R_{S_2} R_{S_2} R_{S_2} S_1)$$
$$= c U (a (a) (a)) (buc))$$

$$R_{s,F} = R_{s,F} U (R_{S_1 S_2} R_{S_2} R_{S_2} R_{S_2} F)$$
$$= \emptyset U (c (a) (a)^* \emptyset) = \emptyset$$

continued on previous page
\[R_{SF} = R_{SF} \cup (R_{S^*}, R_{S^*}, R_{S^*,F}) \]

\[= \emptyset \cup (\Sigma (\text{cU}(\text{a} \cup \text{b}) (a^*) (b \cup c))^*) \]

\[= (\text{cU}(\text{a} \cup \text{b}) (a^*) (b \cup c))^* \]
3-4. Use a general algorithm to transform the following finite automaton into the corresponding regular expression.

- This automaton has two states: a state s_1 which is a start state and a final state, and another state s_2.
- In the state s_1, a and b lead to s_2, and c leads to s_1.
- In the state s_2, a leads to s_2, and b and c lead to s_1.

Regular Expression:

\[
L_{s_f} = \varepsilon^* \cup (\varepsilon \: c^* \: \varepsilon) \\
L_{s_{s_2}} = \emptyset \cup (\varepsilon \: c^* \: aub) \\
L_{s_{s_2}^2} = a \cup ((buc) \: c^* \: \varepsilon) \\
L_{s_{s_f}^2} = \emptyset \cup (buc) \: c^* \: \varepsilon \\
L_{s_2} = c^* \cup (c^* \: (aub) \: (au \: (buc) \: c^* \: (aub)) \: ((buc) \: c^*))
\]
5. Let A be a language recognized by the automaton from Problem 3, and let B be the language corresponding to the following automaton:

- This automaton has 3 states, the starting state r_1 and two final states r_2 and r_3.
- When you see a, from r_1 you move to r_3, from r_2 you move to r_3, and from r_3 you move to r_1.
- When you see b, from r_1 you move to r_3, from r_2 you move to r_1, and from r_3 you move to r_2.
- When you see c, from r_1 you move to r_2, from r_2 you move to r_1, and from r_3 you move back to the same state r_3.

Use the algorithm that we learned in class, with pairs of states from two automata as states of the new deterministic automaton, to describe the automata recognizing the union and the intersection of these two languages.
6. (For extra credit) Prove that the language \(\{0^{2n}1^n\} = \{\Lambda, 001, 000011, 000000111, \ldots\} \) is not regular.

Theory: \(L = \{0^{2n}1^n\} \) is not regular. \(\quad \text{Proof by contradiction} \)

Let's assume that \(L \) is regular. Then, by pumping lemma there exists \(p \) such that every word \(w \in L \) whose length is at least \(p \) can be represented as \(xyz \), so that \(\text{len}(y) > 0 \), \(\text{len}(xy) \leq p \), and for every \(i \geq 0 \), \(xy^i z \in L \).

Let's take \(w = 0^{2p}1^p \) so that \(w \in L \), \(\text{len}(w) = 3p \geq p \).

Since \(\text{len}(xy) \leq p \), \(x \) and \(y \) are among the first \(p \) symbols in \(w \), which means that \(y \) can only consist of 0's.

By pumping lemma \(xyyz \) is in \(L \), but when we added an extra \(y \) to \(xyz \), where \(y \) is some number of 0's, we get \(xyyz = 0001, 0000011, \ldots \). Therefore, \(xyyz \) is not in \(L \), which means that \(L \) is not regular.