1-2. Transform, step by step, the grammar with rules $S \rightarrow \varepsilon$, $S \rightarrow aSb$, and $S \rightarrow bSa$ to Chomsky normal form. Show how the word baba will be generated in the resulting Chomsky-normal-form grammar.

$$
\begin{align*}
S & \rightarrow \varepsilon \\
S & \rightarrow aSb \\
S & \rightarrow bSa \\
pre: & \quad S \rightarrow S
\end{align*}
$$

Step 0: $S \rightarrow ab$
$S \rightarrow ba$
$S_0 \rightarrow \varepsilon$

Step 1:
$S_0 \rightarrow aSb$
$S_0 \rightarrow bSa$
$S_0 \rightarrow ab$
$S_0 \rightarrow ba$

Step 2:
$V_a \rightarrow a$
$V_b \rightarrow b$
$S_0 \rightarrow V_aV_b$
$S_0 \rightarrow V_bV_a$
$S \rightarrow V_aSb$
$S \rightarrow V_bSa$
$S \rightarrow V_aV_b$
$S \rightarrow V_bV_a$
$S_0 \rightarrow \varepsilon$
$S_0 \rightarrow V_aV_b$
$S_0 \rightarrow V_bV_a$

Step 3:
$S \rightarrow V_aS V_b$, $V_a \rightarrow V_a S$
$S \rightarrow V_bS V_a$, $V_b \rightarrow V_b S$
$S_0 \rightarrow V_aS V_b$
$S_0 \rightarrow V_bS V_a$

With the above steps, the word baba can be generated as follows:

```
S \rightarrow V_bS V_a
S \rightarrow V_a V_b
S \rightarrow V_b V_a
S_0 \rightarrow \varepsilon
```

Diagram:

```
  S
 /|
V_a A
/ |\
V_b b
/  |
S_0
```

file:///Q:/cs3350.18a/test3.html
11/8/2018
3-4. Use a general algorithm for transforming PDA into CFG to design a CFG that corresponds to the following pushdown automaton. This automaton has two states: the starting 0-state s_0 and the 1-state s_1. Both states are final. The transitions are:

- From s_0 to s_0, the transition is $0, \varepsilon \rightarrow y$, for some symbol y
- From s_0 to s_1, the transition is $1, y \rightarrow \varepsilon$.
- From s_1 to s_1, the transition is $1, y \rightarrow \varepsilon$.

Show, step by step, how the word 01 will be generated by the resulting grammar.
5. Use the general stack-based algorithms to show:

- how the compiler will transform the expression \((1 - 10) / (8 - 11)\) into postfix form, and
- how it will compute the value of the resulting postfix expression.

\[
(1 - 10) / (8 - 11)
\]
6. Illustrate the pumping lemma for context-free grammars by showing how it will represent the word $w = +1.00$ which is generated by the CFG with starting variable V and rules $V \rightarrow SN.N, V \rightarrow N.N, S \rightarrow +, S \rightarrow -, N \rightarrow DN, N \rightarrow D, D \rightarrow 0$, and $D \rightarrow 1$ as uvxyz. Show, step-by-step, how the corresponding word uvvxyyz can be derived from this CFG.

$V \rightarrow SN.N$
$V \rightarrow N.N$
$S \rightarrow +$
$S \rightarrow -$
$N \rightarrow DN$
$N \rightarrow D$
$D \rightarrow 0$
$D \rightarrow 1$

$w = +1.00$

$V \rightarrow SN.N$
$V \rightarrow N.N$
$S \rightarrow +$
$S \rightarrow -$
$N \rightarrow DN$
$N \rightarrow D$
$D \rightarrow 0$
$D \rightarrow 1$

$u = +1.$
$y = 0$
$x = 0$
y = 0$
z = 0$

= +1.000
7. Prove that the language of all the words of the type $a^n b^n c^n d^n$, $n = 0, 1, 2, \ldots$, is not context-free.

$L = \{a^n b^n c^n d^n : n \geq 0\}$

By contradiction, let's assume L is CFG. Then by pumping

Lemma \(\exists p \forall w \in L \) \((\text{length}(w) \geq p \rightarrow \exists u v x y z : w = u v x y z \text{ and length}(xy) \leq p \land \text{length}(v x y) \leq p \land \forall i (vv^i x y z \in L)) \)

Let's take \(w = a^p b^p c^p d^p \), its length \((w) = 4p \geq p \), so we can represent it as \(uvxyz = a \ldots a b \ldots b c \ldots c d \ldots d \)

The fragment \(v x y \) cannot contain \(a \)'s, \(b \)'s, \(c \)'s and \(d \)'s because then \(\text{length}(v x y) \) is greater than \(p \) because all \(b \)'s are already length \(p \). We have the following options:

1. \(v x y \) is in \(a \)'s - we add \(a \)'s but not \(b \)'s, \(c \)'s or \(d \)'s : we now have more \(a \)'s than \(b \)'s, \(c \)'s, and \(d \)'s

2. \(v x y \) is in \(a \)'s and \(b \)'s - we add \(a \)'s and \(b \)'s but not \(c \)'s : we now have more \(a \)'s and \(b \)'s than \(c \)'s and \(d \)'s

3. \(v x y \) is in \(b \)'s - we add \(b \)'s but not \(a \)'s or \(c \)'s or \(d \)'s : we now have more \(b \)'s than \(a \)'s, \(c \)'s and \(d \)'s

4. \(v x y \) is in \(b \)'s and \(c \)'s - we add \(b \)'s and \(c \)'s but not \(a \)'s or \(d \)'s : we now have more \(b \)'s and \(c \)'s than \(a \)'s and \(d \)'s

5. \(v x y \) is in \(c \)'s - we add \(c \)'s but not \(a \)'s, \(b \)'s or \(d \)'s - we now have more \(c \)'s than \(a \)'s, \(b \)'s and \(d \)'s

6. \(v x y \) is in \(c \)'s and \(d \)'s - we add \(c \)'s and \(d \)'s but not \(a \)'s or \(b \)'s, we now have more \(c \)'s and \(d \)'s than \(a \)'s or \(b \)'s

7. \(v x y \) is in \(c \)'s - we add \(c \)'s but not \(a \)'s, \(b \)'s or \(c \)'s : so \(\not \exists u v^2 x y^2 z \in L \)

This is a contradiction and thus our assumption that \(L \) is CFG is false.

This is a contradiction and thus our assumption that L is CFG is false.
8. Design a Turing machine that, given a positive unary number \(n \), adds 2 to this number. Test it, step-by-step, on the example of \(n = 0 \).

Rules

- **start**, \(\uparrow \) \(\rightarrow \) working, R
- working, \(\uparrow \) \(\rightarrow \) working, R
- working, \(\downarrow \) \(\rightarrow \) add1, \(\rightarrow \) R
- add1, \(\uparrow \) \(\rightarrow \) back, \(\rightarrow \) R
- back, \(\uparrow \) \(\rightarrow \) back, R
- back, \(\downarrow \) \(\rightarrow \) halt

\(n = 0 \)
9. (For extra credit) Design a Turing machine that, given two unary numbers, computes their sum. The input is represented as two numbers separated by blank space. Test it, step-by-step, on the example of $2 + 2$.

Rules

- **Start**, $
$ → num1, R
- num1, $
$ → num1, R
- num1, $
$ → num2, R
- num2, $
$ → num2, R
- num2, $
$ → erase, L
- erase, $
$ → $
$, add, L
- erase, $
$ → back, L
- add, $
$ → add, L
- add, $
$ → $
$, back, L
- back, $
$ → back, L
- back, $
$ → halt

$2 + 2$

```plaintext

\[\begin{array}{c}
\text{start} \\
\text{num1} \\
\text{num1} \\
\text{num2} \\
\text{num2} \\
\text{erase} \\
\text{add} \\
\text{add} \\
\text{back} \\
\text{back} \\
\text{halt}
\end{array}\]
```

file:///Q:/cs3350.18a/test3.html

11/8/2018
10. (For extra credit) Let us consider possibly signed binary integers. Such numbers can be described by the following finite automaton. This automaton has a starting state s, an intermediate state i, a final state f, and a sink state k, and the following transitions:

- from s, + or $-$ lead to i, while 0 or 1 lead to f;
- from i, 0 or 1 lead to f, while + or $-$ leads to sink;
- from f, 0 or 1 lead to f, while + or $-$ lead to sink.

Use the general algorithm to transform this finite automaton into a Turing machine. Show, step-by-step, how your Turing machine will accept the word $+01$.

\[+01 \]

\[\begin{array}{l}
\text{Start, } \uparrow \rightarrow s, R \\
 s, + \rightarrow i, R \\
 s, - \rightarrow i, R \\
 s, 0 \rightarrow f, R \\
 s, 1 \rightarrow f, R \\
i, 0 \rightarrow f, R \\
i, 1 \rightarrow f, R \\
i, + \rightarrow k, R \\
i, - \rightarrow k, R \\
\end{array} \]

\[\begin{array}{l}
k, + \rightarrow k, R \\
k, - \rightarrow k, R \\
k, 0 \rightarrow k, R \\
k, 1 \rightarrow k, R \\
f, 0 \rightarrow f, R \\
f, 1 \rightarrow f, R \\
f, + \rightarrow k, R \\
f, - \rightarrow k, R \\
\end{array} \]

\[\text{accept} \]

\[\text{reject} \]