CS 3350 Automata, Computability, and Formal Languages
Spring 2019, Test 1

Last 4 digits of your UTEP ID number: ___________________
\[\begin{array}{c} \frac{100}{100} \end{array} \]

General comments:

- you are allowed up to 5 pages of handwritten notes;
- if you need extra pages, place the last 4 digits of ID number on each extra page;
- the main goal of most questions is to show that you know the corresponding algorithms; so, if you are running out of time, just follow the few first steps of the corresponding algorithm;
- each question will be graded on its own merit; so, for example, if when answering to the first part of the question, you got a wrong automaton, but on the second part, you correctly traced the new automaton, you will get full credit for the second part.

Good luck!

30/30

1-3. Let us consider the automaton for recognizing signed binary integers. This automaton has 4 states: start (st), sign (si), integer (i), and error (e). Start is the starting state, integer is the only final state. The transitions are as follows:

- from st, any digit (0 or 1) leads to i, any sign (+ or −) leads to si;
- from si, any digit leads to i, any sign to e;
- from i, any digit (0 or 1) leads to i, any sign to e;
- from e, every symbol leads to e.

1. Trace, step-by-step, how this finite automaton will check whether the following two words (sequences of symbols) represent a valid Java signed integer:

- the word +0101 (which this automaton should accept) and
- the word 1+1 (which this automaton should reject).

2. Use the above tracing to find the parts \(x, y, \) and \(z \) of the word +0101 corresponding to the Pumping Lemma.

3. Write down the tuple \(<Q, \Sigma, \delta, q_0, F> \) corresponding to this automaton:

- \(Q \) is the set of all the states,
- \(\Sigma \) is the alphabet, i.e., the set of all the symbols that this automaton can encounter;
- \(\delta: Q \times \Sigma \rightarrow Q \) is the function that describes, for each state \(q \) and for each symbol \(s \), the state \(\delta(q, s) \) to which the automaton that was originally in the state \(q \) moves when it sees the symbol \(s \) (you do not need to describe all possible transitions this way, just describe two of them);
- \(q_0 \) is the starting state, and
- \(F \) is the set of all final states.
1. + 0 1 0 1 1 + 1 +

2. + 0 1 0 1

\[Q = \{ s_I, s_I, s_e, \varepsilon \} \]
\[\Sigma = \{ 0, 1, +, -3 \} \]
\[Q_0 = s_I \]
\[F = \{ s_I, \varepsilon \} \]
\[\delta(s_I, 0) = i \]
\[\delta(s_I, +) = e \]
4-5. Let A be the automaton described in Problem 1-3. Let B be an automaton that accepts all the strings that contain only $+$s and 1s but not any other symbols. This automaton has two states: the start state which is also a final state, and the sink state. The transitions are as follows:
- from the start state, $+$ or 1 leads back to the start state, 0 leads to the sink;
- from the sink state, any symbol leads back to the sink.

4. Use the algorithm that we had in class to describe the following two new automata:
- the automaton that recognizes the union $A \cup B$ of the two corresponding languages, and
- the automaton that recognizes the intersection of the languages A and B.

5. Test these two new automata step-by-step on the following words:
- test the union automaton on the example of the word $1+1$ (that it should accept);
- test the intersection automaton on the example of the words $+01$ (that it should reject).
Automaton A

Intersection:
Intersection is also part of union.

Union:

Intersection:
Intersection is also part of union.
6. Use the general algorithm that we learned in class to design a non-deterministic finite automaton that recognizes the language \((a \cup b)^*c:\)

- first, describe the automata for recognizing \(a\), \(b\), and \(c\);
- then, combine them into the automata for recognizing the union \(a \cup b\) and the Kleene star \((a \cup b)^*\);
- finally, combine the two automata into an automaton for recognizing the composition \((a \cup b)^*c\) of the two languages.

7. Use the general algorithm to transform the resulting non-deterministic finite automaton into a deterministic one.
8.9. Use a general algorithm to transform the following finite automaton into the corresponding regular expression.

- This automaton has two states: a state s_1 which is a start state, and another state s_2 which is a final state.
- In the state s_1, a and b lead to s_2, and c leads to s_1.
- In the state s_2, a and c lead to s_1, and b leads to s_2.

\[
R_{s_1 s_2} = R_{s_1 s_2} \cup C R_{s_1 s_1} R_{s_1 s_1} R_{s_1 s_2}^* \]
\[
= \emptyset \cup C \emptyset \emptyset \]
\[
= \emptyset
\]

\[
R_{s_1 f} = R_{s_1 f} \cup C R_{s_1 s_1} R_{s_1 s_1} R_{s_1 f}^* \]
\[
= \emptyset
\]

\[
R_{s_2 f} = R_{s_2 f} \cup C R_{s_2 s_1} R_{s_1 s_1} R_{s_1 f}^* \]
\[
= \emptyset
\]

\[
R_{s_2 s_2} = R_{s_2 s_2} \cup C R_{s_2 s_1} R_{s_1 s_1} R_{s_1 s_1} R_{s_2 s_2}^* \]
\[
= \emptyset \cup C \emptyset \emptyset \]
\[
= \emptyset
\]
Eliminating S_2:

$$R_{S_1, F} = R_{S_1, F} \cup \rho R_{S_1, S_4} R_{S_4, S_5} R_{S_5, F} = c^* (a \cup b) (b \cup (a \cup c (c^* \cup a \cup b))^*)$$

Regular expression for automaton
8-9. Use a general algorithm to transform the following finite automaton into the corresponding regular expression.

- This automaton has two states: a state s_1 which is a start state, and another state s_2 which is a final state.
- In the state s_1, a and b lead to s_2, and c leads to s_1.
- In the state s_2, a and c lead to s_1, and b leads to s_2.

$$R_{ss_1}^* = R_{ss_1} \cup (R_{ss_2} R_{s_2 s_1}^* R_{s_2 s_1})$$

$$= \emptyset \cup (\emptyset b^* (a \cup c))$$

$$= \emptyset \cup \emptyset = \emptyset$$

$$R_{sf}^* = R_{sf} \cup (R_{ss_2} R_{s_2 s_1}^* R_{s_2 s_1})$$

$$= \emptyset \cup (\emptyset)$$

$$= \emptyset$$

$$R_{s_1 s_1}^* = R_{s_1 s_1} \cup (R_{s_1 s_2} R_{s_2 s_1}^* R_{s_2 s_1})$$

$$= C \cup ((a \cup b) b^* (a \cup c))$$

$$R_{s_1 f}^* = R_{s_1 f} \cup (R_{s_1 s_2} R_{s_2 s_1}^* R_{s_2 s_1})$$

$$= \emptyset \cup ((a \cup b) b^* \emptyset)$$

$$= (a \cup b) b^*$$
S. Automaton from Problem 12 accepts the word aeb.

- Trace, step-by-step, that this word is indeed accepted by the given automaton.
- Trace that the words xyyz and xyyyyz are also accepted by this automaton.