CS 3350 Automata, Computability, and Formal Languages
Fall 2019, Test 1

Last 4 digits of your UTEP ID number: ________________________

General comments:

• you are allowed up to 5 pages of handwritten notes;
• if you need extra pages, place the last 4 digits of ID number on each extra page;
• the main goal of most questions is to show that you know the corresponding algorithms; so, if
 you are running of time, just follow the few first steps of the corresponding algorithm;
• each question will be graded on its own merit; so, for example, if when answering to the first
 part of the question, you got a wrong automaton, but on the second part, you correctly traced
 the new automaton, you will get full credit for the second part.

Good luck!

1-3. Let us consider an automaton for recognizing identifiers in Java, i.e., strings that start with a
letter, followed by letters, digits, or an underscore _ . For simplicity, assume that the only letter is b,
and the only digit is 0. signed binary integers. This automaton has 3 states: start (s), identifier (i), and
error (e). Start is the starting state, identifier is the only final state. The transitions are as follows:

• from the state s, symbol b leads to i, symbols 0 and _ lead to e;
• from i, any symbol leads to i; and
• from e, every symbol leads to e.

1. Trace, step-by-step, how this finite automaton will check whether the following two strings are
valid Java identifiers:

• the word b_0 (which this automaton should accept) and
• the word 0b (which this automaton should reject).

2. Use the above tracing to find the parts x, y, and z of the word bb_0 corresponding to the Pumping
Lemma. Check that the “pumped” word xyyz will also be accepted by this automaton.

3. Write down the tuple <Q, Σ, δ, q₀, F> corresponding to this automaton:

• Q is the set of all the states,
• Σ is the alphabet, i.e., the set of all the symbols that this automaton can encounter;
• δ: Q x Σ → Q is the function that describes, for each state q and for each symbol s, the state
 δ(q, s) to which the automaton that was originally in the state q moves when it sees the symbol
 s (you do not need to describe all possible transitions this way, just describe two of them);
• q₀ is the staring state, and
• F is the set of all final states.
1. \[b \rightarrow 10 \]
 \[st \rightarrow i \rightarrow 1 \]
 \[accepted \]

2. \[b \rightarrow b \rightarrow 0 \]
 \[x = b \text{ (before 1st rep)} \]
 \[y = b \text{ (between 1st and 2nd rep)} \]
 \[z = -0 \text{ (after the 2nd rep)} \]

 By pumping \(y = xyz \), it also shows it can be accepted.

3. \[Q = \{ s, i, e \} \]
 \[\Sigma = \{ b, o, \rightarrow, 1 \} \]
 \[\delta(s, b) = i \]
 \[\delta(s, o) = e \]
 \[q_0 = s \]
 \[F = \{ i, f \} \]
4-5. Let A be the automaton described in Problem 1-3. Let B be an automaton that accepts all the strings that contain only b and _ but not any other symbols. This automaton has two states: the start state which is also a final state, and the sink state. The transitions are as follows:

- from the start state, b or _ leads back to the start state, 0 leads to the sink;
- from the sink state, any symbol leads back to the sink.

4. Use the algorithm that we had in class to describe the following two new automata:

- the automaton that recognizes the union A U B of the two corresponding languages, and
- the automaton that recognizes the intersection of the languages A and B.

5. Test these two new automata step-by-step on the following words:

- test the union automaton on the example of the word 0b (that it should accept);
- test the intersection automaton on the example of the words b_0 (that it should reject).
6. Use the general algorithm that we learned in class to design a non-deterministic finite automaton that recognizes the language \(b(0 \cup b \cup ___)^* \):

- first, describe the automata for recognizing \(b \), \(0 \), and \(___ \);
- then, combine them into the automata for recognizing the union \(0 \cup b \), \(0 \cup b \cup ___ \) and the Kleene star \((0 \cup b \cup ___)^* \);
- finally, combine the automaton for \(b \) with an automaton for the Kleene star into an automaton for recognizing the desired composition of the two languages.

7. Use the general algorithm to transform the resulting non-deterministic finite automaton into a deterministic one.
\((0v+bv-)\)
8-9. Use a general algorithm to transform the finite automaton B from Problem 4-5 into the corresponding regular expression.

\[
R^*_{ns,s^+} = R_{ns,s^+} \cup (R_{ns,s^+} R^*_{sink,sink} R_{sink,s^+}) \\
= \wedge \cup (\emptyset \ldots) = \wedge
\]

\[
R^*_{s^+,s^+} = R_{s^+,s^+} \cup (R_{s^+,s^+} R^*_{sink,sink} R_{sink,s^+}) \\
= b_1 \cup \emptyset (b_1 \wedge \emptyset^* \emptyset) = b_1 \cup \emptyset = b_1
\]

\[
R^*_{s^+,nf} = R_{s^+,nf} \cup (R_{s^+,sink} R^*_{sink,sink} R_{sink,nf}) \\
= \wedge \cup (b_1 \wedge \emptyset^* \emptyset) = \wedge \cup \emptyset = \wedge
\]
\(\mathcal{L} = S+ \)

\[\rightarrow (b, \cdot)^* \]

\[\rightarrow (s) \rightarrow (n) \rightarrow (f) \]

\[
R'_{ns, nf} = R_{ns, nf} \cup (R_{ns, st} \ R^*_{st, st} \ R_{st, nf}) \\
= \emptyset \cup (b, \cdot)^* \ = (b, \cdot)^*
\]
10) By contradiction, let's assume that \(L \) is regular. Then by pumping lemma,\(\exists p \geq p \geq p \rightarrow \exists x, y, z \text{ s.t. } w = xyz \& \text{len}(y) > 0 \& \text{len}(xy) \leq p \).

In particular, this should be true for the following word: \(xy \in L \).
\[
w = b^p0^p = b \ldots b, 0 \ldots 0 = xy, \text{len}(xy) \leq p
\]
x is in the first half, so \(y \) only has \(b \)'s. So when we go from \(w = xy \) to \(xy, \) we add \(b \)'s, but we did not add any \(0 \)'s, so now we have more \(b \)'s than \(0 \)'s, so \(xy \notin L \). Contradiction shows that our assumption is wrong, so \(L \) is not regular.
10. Prove that the language L of all the words that have equal number of b's and 0's is not regular.

Prove by contradiction using pumping lemma.

$L = \{w \in \{b, 0\}^* \mid p \leq 0 \}$ has as many

b's as 0's.

Let L be a regular language, there exist an integer $p > 0$, and a word $w \in L$ that we can write as

$w = xyz$ \quad \text{where} \quad \text{len}(y) \geq p, \text{len}(xy) \leq p$

for every $i \in \mathbb{N}$ in $xy^iz \in L$.

Let's use $\overline{b6 \ldots b000 \ldots 0}$

Assume that it is regular then there is an integer $p > 0$ as stated in pumping lemma. Set $w = \overline{b^p0^p}$

That $\overline{b^p0^p} = xyz$ where $\text{len}(y) \geq p$, $\text{len}(xy) \leq p$ and for every $i \in \mathbb{N}$ $xy^iz \in L$.

Note that xy is made up of b's so y is made up of b's. Since $\text{len}(y) \geq p$ there are at least one b. So when we pump b's according to pumping lemma, we don't add any 0's. So it's not the same as b's.