\[E_e \rightarrow aO_e \]
\[E_e \rightarrow bE_0 \]
\[O_e \rightarrow bO_0 \]
\[O_e \rightarrow aE_e \]
\[E_0 \rightarrow bE_e \]
\[E_0 \rightarrow aO_0 \]
\[O_0 \rightarrow aE_0 \]
\[O_0 \rightarrow bO_e \]
4. Use the general algorithm to transform the following pushdown automaton into a context-free grammar. This automaton has 4 states:

- the starting state s,
- the reading state r,
- the checking state c, and
- the final state f.

The transitions are as follows:

- From s to r, the transition is:
 $\varepsilon, \varepsilon \rightarrow \$$
- From r to r, the transitions are:
 $0, \varepsilon \rightarrow 1$
 $1, \varepsilon \rightarrow 0$
- From r to c, we have a jump $\varepsilon, \varepsilon \rightarrow \varepsilon$
- From c to c, the transitions are:
 $0, 0 \rightarrow \varepsilon$
 $1, 1 \rightarrow \varepsilon$
- From c to f, the only transition is:
 $\varepsilon, \$$ \rightarrow \varepsilon$

Show, step-by-step, how the resulting grammar will generate the sequence 0101.
5. Show, step by step, how the stack-based algorithm will transform the expression $5 - (3 - 7)$ into a postfix expression, and then how a second stack-based algorithm will compute the value of this postfix expression.
6. For the grammar from Problem 1, show how the word $dcdc$ can be represented as $uvxyz$ in accordance with the pumping lemma for context-free grammars. Show that the corresponding word $uvvxyyz$ will be generated by this grammar.