Ambiguous vs. Unambiguous Grammars

Definitions. In some context-free grammars, the same word can be generated in two or more different ways. Such grammars are called ambiguous. If every word has at most one derivation, the grammar is called unambiguous.

Why this is important. How can we describe arithmetic expressions with numbers, such as 5, or \(2 + 3 \cdot 4\)? At first glance, this is straightforward:

- every digit is an arithmetic expression, so we have 10 rules
 \[
 E \rightarrow 0, \quad E \rightarrow 1, \ldots, E \rightarrow 9
 \]
- if we have two arithmetic expressions and we combine them with the plus sign, we still get an arithmetic expression; this corresponds to the rule
 \[
 E \rightarrow E + E;
 \]
- if we have two arithmetic expressions and we combine them with the multiplication sign, we still get an arithmetic expression; this corresponds to the rule
 \[
 E \rightarrow E \cdot E;
 \]
- if \(E\) is an arithmetic expression, then \((E)\) is also an arithmetic expression; this corresponds to the rule
 \[
 E \rightarrow (E).
 \]

How can we derive the expression \(2 + 3 \cdot 4\) from these rules? Our understanding of this expression is that it is the sum of two expressions: the number 2 and the product \(3 \cdot 4\), so we should use the rule \(E \rightarrow E + E\) and then derive 2 from the first \(E\) and the expression \(3 \cdot 4\) from the second \(E\).

Deriving 2 from \(E\) is easy: we have a rule \(E \rightarrow 2\).

The expression \(3 \cdot 4\) can be represented as a product of 3 and 4, which are also expressions. So, we have the following natural derivation of the expression \(2 + 3 \cdot 4\):
The problem is that with this grammar, we can derive this same expression differently: view it as the product of $2 + 3$ and number 4:

Since one of our main purposes is compiling, this is not what we want: this derivation will lead to computing a different value $(2 + 3) \cdot 4$. We would like to have only one derivation – i.e., we want our grammar to be unambiguous.

How to correct this situation: example. In this example, instead of just considering expressions (E), we can also introduce the notion of a *term* T – which is either a number, or a product, or an expression in parentheses. In this case, we have the following rules:

$$E \rightarrow T; \ E \rightarrow T + E; \ T \rightarrow (E); \ T \rightarrow T \cdot T; T \rightarrow 0; \ldots T \rightarrow 9.$$

In this grammar, the expression $2 + 3 \cdot 4$ has only one derivation:
This grammar, by the way, is still ambiguous: e.g., the expression $1 \cdot 2 \cdot 3$ can be interpreted as $(1 \cdot 2) \cdot 3$ (as Java does), or as $1 \cdot (2 \cdot 3)$. So, to get a truly unambiguous grammar, we need more arrangement. For example, we can introduce an additional concept of a factor F and get the following rules:

$$E \rightarrow T; \quad E \rightarrow T + E; \quad T \rightarrow F; \quad F \rightarrow (E); \quad T \rightarrow F \cdot T; \quad F \rightarrow 0; \ldots F \rightarrow 9.$$

Then, the expression $2 + 3 \cdot 4$ can be derived as follows:

How can we derive the word $2 + 3 \cdot 4$ in this grammar: a detailed explanation. We start with the starting variable E. To this variable, we can apply one of the two rules: $E \rightarrow T$ and $E \rightarrow T + E$.
If we use the rule $E \rightarrow T$, then next, we should have a derivation $T \rightarrow 2+3\cdot4$. However, T indicates a term i.e., a number, or a product, or an expression in parentheses, and $2+3\cdot4$ is not a number, not a product, and not an expression in parentheses.

Thus, the only rule that we can apply is the rule

$$E \rightarrow T + E.$$

In the expression $2+3\cdot4$, there is only one plus sign. So, the only way to match this expression with the expression $T + E$ is to associate T with what is before the plus sign, and E with what is after the plus sign. In other words, we need to have the derivations $T \rightarrow 2$ and $E \rightarrow 3 \cdot 4$.

Let us see how we can derive 2 from T. There are two rules that replace the variable T: the rule $T \rightarrow F$ and the rule $T \rightarrow F \cdot T$. If we apply the second rule, we will get an expression with a multiplication sign, and the desired expression 2 does not have a multiplication sign. Thus, the only rule we can apply is the rule $T \rightarrow F$. By applying this rule, we get the following derivation:

$$E \rightarrow T + E \rightarrow F + E.$$

Now, we need to derive 2 from F. The derivation $F \rightarrow 2$ is actually one of the rules. So, we have the derivation

$$E \rightarrow T + E \rightarrow F + E \rightarrow 2 + E.$$

Let us see how we can derive $3 \cdot 4$ from the variable E. To this variable, we can apply one of the two rules: $E \rightarrow T$ and $E \rightarrow T + E$. If we apply the second rule, we get an expression containing the plus sign, and in the expression $3 \cdot 4$ that we want to derive there is no plus sign. Thus, we cannot apply the second rule, and the only rule we can apply is the rule $E \rightarrow T$. By adding the application of this rule, we have the following derivation:

$$E \rightarrow T + E \rightarrow F + E \rightarrow 2 + E \rightarrow 2 + T.$$

We already derived the first part $2+$ of the desired expression. To derive the whole expression $2+3\cdot4$, we need to derive the remaining part of the expression $3 \cdot 4$ from the variable T.

There are two rules that replace the variable T: the rule $T \rightarrow F$ and the rule $T \rightarrow F \cdot T$. If we apply the first rule, then we will need to derive the expression $3 \cdot 4$ from the variable F. To the variable F, we can apply either the rule $F \rightarrow (E)$, or one of the rules $F \rightarrow 0, \ldots, F \rightarrow 9$. In the first case, we get an expression with parentheses, and $3 \cdot 4$ does not have parentheses. In the second case, we get a digit, and $3 \cdot 4$ is not a digit. In both cases, we do not get the expression $3 \cdot 4$.

Thus, to get this expression, we cannot apply the rule $T \rightarrow F$. So, the only rule that we can apply is the rule $T \rightarrow F \cdot T$. By adding the application of this rule, we have the following derivation:

$$E \rightarrow T + E \rightarrow F + E \rightarrow 2 + E \rightarrow 2 + F \cdot T.$$
Our expression has only one multiplication symbol, so the only way to match our expression $3 \cdot 4$ with $F \cdot T$ is to match 3 with F and 4 with T. The transition from F to 3 is straightforward, we have a rule $F \rightarrow 3$:

$$E \rightarrow T + E \rightarrow 2 + E \rightarrow 2 + T \rightarrow F + E \rightarrow 2 + F \cdot T \rightarrow 2 + 3 \cdot T.$$

What is left is to derive 4 from T. There are two rules that replace the variable T: the rule $T \rightarrow F$ and the rule $T \rightarrow F \cdot T$. If we apply the second rule, we will get an expression with a multiplication sign, and 4 does not have any sign. So, our only choice is to apply the first rule $T \rightarrow F$. By adding the application of this rule, we have the following derivation:

$$E \rightarrow T + E \rightarrow F + E \rightarrow 2 + E \rightarrow 2 + T \rightarrow 2 + F \cdot T \rightarrow 2 + 3 \cdot T \rightarrow 2 + 3 \cdot F.$$

Finally, to match, we need to derive 4 from the variable F. This can be done by applying the rule $F \rightarrow 4$, so the final derivation takes the following form:

$$E \rightarrow T + E \rightarrow F + E \rightarrow 2 + E \rightarrow 2 + T \rightarrow 2 + F \cdot T \rightarrow 2 + 3 \cdot T \rightarrow 2 + 3 \cdot F \rightarrow 2 + 3 \cdot 4.$$

This is exactly the derivation that we described in the tree form.