Simple Examples of Finite Automata

What we had so far: automaton for recognizing unsigned binary integers. So far, we had an automaton that recognizes unsigned binary integers provided that the only other possible symbol is letter a.

![Diagram of automaton for recognizing unsigned binary integers]

Automaton for recognizing general unsigned integers. The main difference is that now:

- in addition to digits 0 and 1, we can have 2, 3, 4, . . . , 9, and
- in addition to the symbol a, we can have all other symbols on the keyboard: a, b, c, etc.

Transitions are the same, so all we need is add the new symbols to the arrows describing these transitions:

![Diagram of automaton for recognizing general unsigned integers]
What about general integers – which may be signed? In general, we can also have signed integers, e.g., -19 or $+26$. In this case, the first symbol can be a sign.

Once we read a sign, this is not an integer yet, the next symbol should be a digit. We can thus say that we are in a special state si. In this state:

- if we see a digit, i.e., $0, \ldots, 9$, then we know what we have so far is an integer, so we go to state i;

- on the other hand, if the next symbol is not a digit, then we know that we have is an error, so we go to the error state e.

The resulting automaton has the following form:

![Automaton Diagram]

Comment. If we end up in a state which is not a final state, the word is rejected – in this case, the state is not an unsigned integer. Please note the following:

- In many previous examples, when the state was rejected, it was because we reached a sink state.

- However, here, if all we type in is the sign $+$, then we end up in a state si. If this is the only symbol we type in, then the word $+$ is rejected, because si is not a final state. But, as you see, si is not a sink state.

First example. Let is trace how the integer 90 will be recognized. In the beginning, we are in the start state:
Then, we read digit 9: 90. What we have read is already an integer, so we are in state i.

Now, we read 0: 90. We are still in the integer state:
We have read all the digits, we are in the final state, so the word 90 is recognized as an integer.

Second example. Let us trace how the integer -19 will be recognized. In the beginning, we are in the start state:

```
Then, we read the sign $-19$ and go into the sign state:
```

Then, we read the sign -19 and go into the sign state:
Then, we read the digit 1: -19. What we have read so far, i.e., number -1, is already an integer, so we are in the state i.

Finally, we read the digit 9: -19, and are still in the state i:
We have read all the symbols, we end up in the state \(i\), which is a final state, so we conclude that what we have read is an integer.

Fixed-point real numbers: first approximation. Let us now consider fixed-point real numbers, i.e., numbers of the type 1.35, \(-1.35\), \(+1.35\), 1., \(-1.\), \(+1.\), etc. Java also allows to have numbers like .5, \(-.5\), \(+.5\), but, for simplicity, let us first ignore this possibility, and consider only the cases when we have digits before the decimal point. Such numbers can be described as follows:

- first, we have an integer; e.g., for \(-1.35\), this integer is \(-1\);
- then, we have a decimal point;
- finally, we have an unsigned integer; in the above example, this unsigned integer is 35.

How can we describe this as a finite automaton?

- First, we follow all the steps of the above automaton for recognizing integers.
- However, the state \(i\) is no longer the final state, since \(-1\) is *not* a correct real number in Java.
- Instead, we have to see a period. Once we see a period, it is already a real number. We can therefore say that we are in a state \(r\).
- After the period, we can only have digits. If we have anything else, it is an error.

In terms of an automaton, this can be described as follows:
Example. Let us show how the number -1.35 will be recognized. We start in the start state:

Then, we read the minus sign -1.35, and go into the state si:
After that, we read the digit 1: -1.35, and get into the state i:

Then, we read a period, and get into the state r:
After that, we read digit 3 and stay in r:

Finally, we read the digit 5: -1.35
We read all the symbols, we are in the final state \(r \), so the word \(-1.35\) is an integer.

Comment. If you see this graph in the very beginning, it sounds complicated, but as built it step by step, hopefully, it does not sound that difficult.

Practice. Check how you can trace whether different words are accepted or rejected by these two automata. Try your hand on designing automata for other cases:

- for all unsigned integers – taking into account that we can have numbers of the type \(-.35\), with no digits before the decimal points;
- for all real numbers, including floating point Java numbers like \(-1.35e-6\);
- for names of variables: in the usual Java arrangement, such names must start with a small letter and be followed by letters, digits, or an underscore symbol _.

Some such questions may be assigned as a homework, some other questions may be on the test.