Solution to Homework 1

Task 1: general description. In class, we designed automata for recognizing integers and real numbers.

Task 1.1. Use the same ideas to describe an automaton for recognizing Java variable names; to describe an automaton, draw a picture like we do in class.

A natural idea is to have 3 states: start (s), correct variable name (v), and error (e). Start is the starting state, v is the only final state. The transitions are as follows:

- from s, any letter a, \ldots, z lead to v, every other symbol leads to e;
- from v, any digit, any letter, and the underline symbol lead back to v, every other symbol leads to e;
- from e, every symbol leads back to e.

Solution. The desired automaton takes the following form:
Task 1.2. Trace, step-by-step, how this finite automaton will check whether the following two words (sequences of symbols) are correct Java variable names:

- the word `size7` (which this automaton should accept) and
- the word `7size` (which this automaton should reject).

Solution. Let us trace how this automaton will accept the word `size7`. We are originally in the state s:

Then, we read the first letter s of the word `size7`, so we move to state v:

Then, we read the second letter i of the word `size7`, and we stay in the state v:

Then, we read the letter z of the word \textit{size7}, and still stay in v:

Same with letter e of the word \textit{size7}:

Finally, we read the digit 7 of the word \textit{size7} and still stay in v:
The word is read, we are in the final state, so the word $size7$ is accepted.

Let us now trace how the automaton will react to the word $7size$. We also start in the start state s:

Then, we read the first symbol 7 of the word $7size$, and go to the error state e:

After that, we read three other letters and stay in the error state:
We have read all the symbols, we are in the state e which is not final, so the word 7size is not accepted.
Task 1.3. Write down the tuple $\langle Q, \Sigma, \delta, q_0, F \rangle$ corresponding to this automaton:

- Q is the set of all the states,
- Σ is the alphabet, i.e., the set of all the symbols that this automaton can encounter; for simplicity, consider only five symbols: digits 0, 1, letters a and b, and an underscore;
- $\delta : Q \times \Sigma \to Q$ is the function that describes, for each state q and for each symbol s, the state $\delta(q, s)$ to which the automaton that was originally in the state q moves when it sees the symbol s (you do not need to describe all possible transitions this way, just describe two of them);
- q_0 is the starting state, and
- F is the set of all final states.

Solution. $Q = \{s, v, e\}$, $\Sigma = \{a, b, \ldots, z, 0, 1, \ldots, 9, _\}$, $q_0 = s$, $F = \{v\}$, and the transition function δ is described by the following table:

<table>
<thead>
<tr>
<th></th>
<th>a, b, \ldots, z</th>
<th>0, 1, \ldots, 9, _</th>
<th>$_\ldots$</th>
</tr>
</thead>
<tbody>
<tr>
<td>s</td>
<td>v</td>
<td>e</td>
<td>e</td>
</tr>
<tr>
<td>v</td>
<td>v</td>
<td>v</td>
<td>e</td>
</tr>
<tr>
<td>e</td>
<td>e</td>
<td>e</td>
<td>e</td>
</tr>
</tbody>
</table>
Task 1.4. Apply the general algorithm for union and intersection to:

- this automaton as Automaton A and
- to the automaton for recognizing unsigned integers – that is described in the examples lecture – as Automaton B.

For simplicity, feel free to assume that you only have symbols $+, 0, 1,$ and a.

Solution. If we limit ourselves to these 5 symbols, then the Automaton A takes the form

![Automaton A Diagram]

The Automaton B has the following form:

![Automaton B Diagram]
Short solution. In the beginning, before we see any symbols, both automata are in the state s, so the combined automaton is in the state (s, s). Then:

- if we read 0 or 1, Automaton A goes into state e and automaton B goes into state i, so we go into the state (e, i);
- if we read a, then A goes into v and B goes into e, so the combined automaton goes into (v, i);
- if we read $+$, then both automata go into e states, so the combined automaton goes into (e, e).

We can similarly describe transitions from these three new states. As a result, we get the following automaton:
Long solution. The states for the union and intersection automata have the following form:

\[
\begin{array}{ccc}
(s, s) & (s, t) & (s, e) \\
(v, s) & (v, t) & (v, e) \\
(e, s) & (e, t) & (e, e)
\end{array}
\]

To make the picture clearer, we describe transitions from each state on a separate graph. For transitions from the state \((s, s)\), we get the following picture:
For transitions from the state \((s, i)\), we have the following graph:

Transitions from the state \((s, e)\) have the following form:
Transitions from the state \((v,s)\) have the following form:

\[
\begin{align*}
& (s, s) \\
& (s, i) \\
& (s, e)
\end{align*}
\]

Transitions from the state \((v,i)\) have the following form:

\[
\begin{align*}
& (s, s) \\
& (s, i) \\
& (s, e)
\end{align*}
\]
Transitions from the state \((v,e)\) have the following form:

\[
\begin{align*}
(s,s) & \\
(s,i) & \\
(s,e) & \\
(v,s) & \\
(v,i) & \\
(v,e) & + 0,1,\alpha
\end{align*}
\]

Transitions from the state \((\epsilon,s)\) have the following form:

\[
\begin{align*}
(s,s) & \\
(s,i) & \\
(s,e) & \\
v,s & \\
v,i & \\
v,e & \\
(\epsilon,\epsilon) & 0,1
\end{align*}
\]
Transitions from the state \((e, i)\) have the following form:

\[
\begin{align*}
(s, s) & \quad (s, i) & \quad (s, e) \\
(v, s) & \quad (v, i) & \quad (v, e) \\
(e, s) & \quad (e, i) & \quad (e, e)
\end{align*}
\]

Finally, transitions from the state \((e, e)\) have the following form:

\[
\begin{align*}
(s, s) & \quad (s, i) & \quad (s, e) \\
(v, s) & \quad (v, i) & \quad (v, e) \\
(e, s) & \quad (e, i) & \quad (e, e)
\end{align*}
\]