Not All Languages Are Regular

**What we will do.** We will use Pumping Lemma to prove that some languages are not regular.

Let us recall what is a regular language and what is the Pumping Lemma.

**What is a regular language: reminder.** A language is regular if there exists a finite automaton that:

- accepts all the words from this language and
- rejects all the words which are not in this language.

**Note.** We have shown, in the previous lectures, that:

- for each regular expression, there exists a finite automaton that accepts exactly the word from the language described by this regular expression, and
- for every finite automaton, there exists a regular expression for which the corresponding language contains all the words accepted by this automaton and none of the words rejected by this automaton.

Thus, we can alternatively define a regular language as a language described by a regular expression.

**Pumping Lemma: reminder.** For every regular language $L$, there exists a natural number $p$ such that every word from $L$ whose length $\text{len}(w)$ is at least $p$ can be represented as a concatenation $w = xyz$, where:

- $y$ is non-empty;
- the length $\text{len}(xy)$ does not exceed $p$, and
- for every natural number $i$, the word $xy^iz \overset{\text{def}}{=} xy\ldots yz$, in which $y$ is repeated $i$ times, also belongs to the language $L$.

**Theorem.** The following language is not regular:

$$L = \{a^n b^n : n = 0, 1, 2, \ldots \} = \{\Lambda, ab, aabb, aaabbb, \ldots \}.$$
Why this language is important. The same result can be proven for languages

\{A, \{\}, \{\{\}\}, \{\{\{\}\}\}, \ldots\}

corresponding to the natural requirement that we must exactly as many closing curly brackets as opening ones. This result means that we cannot test this requirement by using finite automata.

Proof: by contradiction. Let us assume that the language \(L\) is regular, and let us show that this assumption leads to a contradiction.

Since this language is regular, according to the Pumping Lemma, there exists an integer \(p\) such that every word from \(L\) whose length \(\text{len}(w)\) is at least \(p\) can be represented as a concatenation \(w = xyz\), where:

- \(y\) is non-empty;
- the length \(\text{len}(xy)\) does not exceed \(p\), and
- for every natural number \(i\), the word \(xy^iz \overset{\text{def}}{=} xy\ldots yz\), in which \(y\) is repeated \(i\) times, also belongs to the language \(L\).

Let us take the word

\[w = a^p b^p = a\ldots ab\ldots b,\]

in which first the letter \(a\) is repeated \(p\) times and then the letter \(b\) is repeated \(p\) times. The length of this word is \(p + p = 2p > p\). So, by pumping lemma, this word can be represented as \(w = xyz\) with \(\text{len}(xy) \leq p\). This word starts with \(xy\), and the length of \(xy\) is smaller than or equal to \(p\). Thus, \(xy\) is among the first \(p\) symbols of the word \(w\) – and these symbols are all \(a\)'s. So, the word \(y\) only has \(a\)'s.

Thus, when we go from the word \(w = xyz\) to the word \(xyyz\), we add \(a\)'s, and we do not add any \(b\)'s. So, in the word \(xyyz\), there are more \(a\)'s than \(b\)'s. Thus, the word \(xyyz\) cannot be in the language \(L\), since by definition \(L\) only contains words which have equal number of \(a\)'s and \(b\)'s.

On the other hand, by Pumping Lemma, the word \(xyyz\) must be in the language \(L\). So, we proved two opposite statements:

- that this word is not in \(L\) and
- that this word is in \(L\).

This is a contradiction.

The only assumption that led to this contradiction is that \(L\) is a regular language. Thus, this assumption is false, so \(L\) is not regular.

Important. It is important to understand every step, and to be able to reproduce this proof verbatim – without skipping steps. Do not try to reformulate it in your own words, do not try to ask “Do you mean that ...” – asking to
compress this proof into a shorter text. It cannot be compressed, all parts are important.

This proof is a template for proving that other languages are not regular. To prove these other results, we need to modify this template.

**First example.** How can we prove that the language

\[ L = \{a^{n+1}b^n : n = 0, 1, 2, \ldots \} = \{a, aab, aaabb, \ldots \} \]

is not regular? Here, as an example, we can take \( w = a^{p+1}b^p \), and the contradiction will be that in all words form \( L \) there is a balance: exactly one more \( a \) than \( b \). So, when we add \( y \) and thus, add \( a \)'s without adding \( b \)'s, we disrupt this balance, so \( xyz \notin L \) and we get a contradiction.

**Second example.** Similarly, all words from the language

\[ L = \{a^nb^{2n} : b = 0, 1, 2, \ldots \} = \{\Lambda, abb, aabbbb, \ldots \} \]

has exactly twice many \( b \)'s than \( a \)'s. If we take \( w = a^pb^{2p} \) and use the Pumping Lemma to add \( a \)'s, we disrupt this balance, so we still get a contradiction.

**Third example.** What if we have a language consisting of all possible words repeated twice

\[ L = \{ww\} = \{\text{catcat, dogdog, bagbag, \ldots }\}? \]

In this case, the word \( a^pb^p \) used in the original proof is not a good example, since it does not belong to this language, but we can repeat this word twice and get the word \( w = a^pb^pa^pb^p \) which is in this example's language \( L \). In this case, when we go from \( w = xyz \) to \( xyz \), we add \( a \)'s to the first part of the word, and get \( a^{p+q}b^pa^pb^p \) for some \( q > 0 \) – so the word \( xyz \) is not a repetition of the same word and thus, it is not in \( L \).

**Practice.** Try to convert these hints into a detailed proofs – using the above proof as a template.